1
|
Youlden DR, Cramb SM, Dunn NA, Muller JM,
Pyke CM and Baade PD: The descriptive epidemiology of female breast
cancer: an international comparison of screening, incidence,
survival and mortality. Cancer Epidemiol. 36:237–248. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao
Z and Lu J: The prognostic role of cancer stem cells in breast
cancer: A meta-analysis of published literatures. Breast Cancer Res
Treat. 122:795–801. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ginestier C, Hur MH, Charafe-Jauffret E,
Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG,
Liu S, et al: ALDH1 is a marker of normal and malignant human
mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 1:555–567. 2007. View Article : Google Scholar
|
5
|
Liu X, Johnson S, Liu S, Kanojia D, Yue W,
Singh UP, Wang Q, Wang Q, Nie Q and Chen H: Nonlinear growth
kinetics of breast cancer stem cells: implications for cancer stem
cell targeted therapy. Sci Rep. 3:24732013.PubMed/NCBI
|
6
|
Kakarala M and Wicha MS: Cancer stem
cells: Implications for cancer treatment and prevention. Cancer J.
13:271–275. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Takebe N, Harris PJ, Warren RQ and Ivy SP:
Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog
pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar
|
8
|
Grudzien P, Lo S, Albain KS, Robinson P,
Rajan P, Strack PR, Golde TE, Miele L and Foreman KE: Inhibition of
Notch signaling reduces the stem-like population of breast cancer
cells and prevents mammosphere formation. Anticancer Res.
30:3853–3867. 2010.PubMed/NCBI
|
9
|
Harrison H, Farnie G, Howell SJ, Rock RE,
Stylianou S, Brennan KR, Bundred NJ and Clarke RB: Regulation of
breast cancer stem cell activity by signaling through the Notch4
receptor. Cancer Res. 70:709–718. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mani SA, Guo W, Liao MJ, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Creighton CJ, Chang JC and Rosen JM:
Epithelial-mesenchymal transition in tumor-initiating cells and its
clinical implications in breast cancer. J Mammary Gland Biol
Neoplasia. 15:253–260. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Drasin DJ, Robin TP and Ford HL: Breast
cancer epithelial-to-mesenchymal transition: examining the
functional consequences of plasticity. Breast Cancer Res.
13:2262011. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Tran DD, Corsa CA, Biswas H, Aft RL and
Longmore GD: Temporal and spatial cooperation of Snail1 and Twist1
during epithelial-mesenchymal transition predicts for human breast
cancer recurrence. Mol Cancer Res. 9:1644–1657. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Han HJ, Russo J, Kohwi Y and
Kohwi-Shigematsu T: SATB1 reprogrammes gene expression to promote
breast tumour growth and metastasis. Nature. 452:187–193. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ordinario E, Han HJ, Furuta S, et al: ATM
suppresses SATB1-induced malignant progression in breast epithelial
cells. PLoS One. 7:e517862012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wicha MS: Cancer stem cells and
metastasis: lethal seeds. Clin Cancer Res. 12:5606–5607. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sheridan C, Kishimoto H, Fuchs RK,
Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S and
Nakshatri H: CD44+/CD24− breast cancer cells exhibit enhanced
invasive properties: an early step necessary for metastasis. Breast
Cancer Res. 8:R592006. View
Article : Google Scholar
|
18
|
Pece S, Serresi M, Santolini E, Capra M,
Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G and Di
Fiore PP: Loss of negative regulation by Numb over Notch is
relevant to human breast carcinogenesis. J Cell Biol. 167:215–221.
2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stylianou S, Clarke RB and Brennan K:
Aberrant activation of notch signaling in human breast cancer.
Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Han J, Hendzel MJ and Allalunis-Turner J:
Notch signaling as a therapeutic target for breast cancer
treatment? Breast Cancer Res. 13:2102011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Battula VL, Shi Y, Evans KW, et al:
Ganglioside GD2 identifies breast cancer stem cells and promotes
tumorigenesis. J Clin Invest. 122:2066–2078. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Battula VL, Evans KW, Hollier BG, et al:
Epithelial-mesenchymal transition-derived cells exhibit
multilineage differentiation potential similar to mesenchymal stem
cells. Stem Cells. 28:1435–1445. 2010. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Peinado H, Olmeda D and Cano A: Snail, Zeb
and bHLH factors in tumour progression: an alliance against the
epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang MH, Hsu DS, Wang HW, et al: Bmi1 is
essential in Twist1-induced epithelial-mesenchymal transition. Nat
Cell Biol. 12:982–992. 2010. View
Article : Google Scholar : PubMed/NCBI
|