1
|
Kaatsch P: Epidemiology of childhood
cancer. Cancer Treat Rev. 36:277–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pui CH, Robison LL and Look AT: Acute
lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cobaleda C and Sánchez-Garcia I: B-cell
acute lymphoblastic. leukaemia: towards understanding its cellular
origin. Bioessays. 31:600–609. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Georgopoulos K, Moore DD and Derfler B:
Ikaros, an early lymphoid-specific transcription factor and a
putative mediator for T cell commitment. Science. 258:808–812.
1992. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kelley CM, Ikeda T, Koipally J, et al:
Helios, a novel dimerization partner of Ikaros expressed in the
earliest hematopoietic progenitors. Curr Biol. 8:508–515. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Morgan B, Sun L, Avitahl N, et al: Aiolos,
a lymphoid restricted transcription factor that interacts with
Ikaros to regulate lymphocyte differentiation. EMBO J.
16:2004–2013. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Georgopoulos K, Winandy S and Avitahl N:
The role of the Ikaros gene in lymphocyte development and
homeostasis. Annu Rev Immunol. 15:155–176. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang JH, Avitahl NA, Cariappa C, et al:
Aiolos regulates B cell activation and maturation to effector
state. Immunity. 9:543–553. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nakase K, Ishimaru F, Avitahl N, et al:
Dominant negative isoform of the Ikaros gene in patients with adult
B-cell acute lymphoblastic leukemia. Cancer Res. 60:4062–4065.
2000.PubMed/NCBI
|
10
|
Nuckel H, Frey UH, Sellmann L, et al: The
IKZF3 (Aiolos) transcription factor is highly upregulated and
inversely correlated with clinical progression in chronic
lymphocytic leukaemia. Br J Haematol. 144:268–270. 2009. View Article : Google Scholar
|
11
|
Billot K, Soeur J, Chereau F, et al:
Deregulation of Aiolos expression in chronic lymphocytic leukemia
is associated with epigenetic modifications. Blood. 117:1917–1927.
2011. View Article : Google Scholar
|
12
|
Antica M, Cicin-Sain L, Kapitanovic S, et
al: Aberrant Ikaros, Aiolos and Helios expression in Hodgkin and
non-Hodgkin lymphoma. Blood. 111:3296–3297. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Caballero R, Setien F, Lopez-Serra L, et
al: Combinatorial effects of splice variants modulate function of
Aiolos. J Cell Sci. 120:2619–2630. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Duhamel M, Arrouss I, Merle-Béral H, et
al: The Aiolos transcription factor is up-regulated in chronic
lymphocytic leukemia. Blood. 111:3225–3228. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cobb BS and Smale ST: Ikaros-family
proteins: in search of molecular functions during lymphocyte
development. Curr Top Microbiol Immunol. 290:29–47. 2005.
|
16
|
Thompson EC, Cobb BS, Sabbattini P, et al:
Ikaros DNA-binding proteins as integral components of B-cell
developmental-stage-specific regulatory circuits. Immunity.
26:335–344. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma S, Pathak S, Mandal M, et al: Ikaros
and Aiolos inhibit pre-B-cell proliferation by directly suppressing
c-Myc expression. Mol Cell Biol. 30:4149–4158. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Myung DS, Park YL, Chung CY, et al:
Expression of livin in colorectal cancer and its relationship to
tumor cell behavior and prognosis. PLoS One. 8:e732622013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Toyoshima H and Hunter T: P27, a novel
inhibitor of G1 cyclin-Cdk protein kinase activity, is related to
p21. Cell. 78:67–74. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Herzog S, Reth M and Jumaa H: Regulation
of B-cell proliferation and differentiation by pre-B-cell receptor
signaling. Nat Rev Immunol. 9:195–205. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cooper AB, Sawai CM, Sicinska E, et al: A
unique function for cyclin D3 in early B cell development. Nat
Immunol. 7:489–497. 2006. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Habib T, Park H, Tsang M, et al: Myc
stimulates B lymphocyte differentiation and amplifies calcium
signaling. J Cell Biol. 179:717–731. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Narvi E, Nera KP, Terho P, et al: Aiolos
controls gene conversion and cell death in DT40 B cells. Scand J
Immunol. 65:503–513. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kikuchi H, Yamashita K, Nakayama M, et al:
Lacking of Aiolos accelerates pre-mature B cell apoptosis mediated
by BCR signaling through elevation in cytochrome c release. Biochim
Biophys Acta. 1793:1304–1314. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang P, Pavletic ZS and Joshi SS:
Increased apoptosis in B-chronic lymphocytic leukemia cells as a
result of cyclin D3 down regulation. Leuk Lymphoma. 43:1827–1835.
2002. View Article : Google Scholar
|
26
|
Ausserlechner MJ, Obexer P, Böck G, et al:
Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle
arrest but not apoptosis in lymphoblastic leukemia cells. Cell
Death Differ. 11:165–174. 2004. View Article : Google Scholar
|
27
|
Shehata M, Schnabl S, Demirtas D, et al:
Reconstitution of PTEN activity by CK2 inhibitors and interference
with the PI3-K/Akt cascade counteract the antiapoptotic effect of
human stromal cells in chronic lymphocytic leukemia. Blood.
116:2513–2521. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhiyong C, Wentong L, Xiaoyang Y, et al:
PTEN Regulates VEGF, VEGFR1 Expression and Its Clinical
Significance in Myeloid Leukemia. Blood (ASH Annual Meeting
Abstracts). 114:Abstract 1001. 2009.
|
29
|
Gutierrez A, Sanda T, Grebliunaite R, et
al: High frequency of PTEN, PI3 K and AKT abnormalities in T-cell
acute lymphoblastic leukemia. Blood. 114:647–650. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Karoui M, Tresallet C, Julie C, et al:
Loss of heterozygosity on 10q and mutational status of PTEN and BM
PR1A in colorectal primary tumours and metastases. Br J Cancer.
90:1230–1234. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Poetsch M, Lorenz G and Kleist B:
Detection of new PTEN/MM AC 1 mutations in head and neck squamous
cell carcinomas with loss of chromosome 10. Cancer Genet Cytogenet.
132:20–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hou R, Zhang J, Yin T, et al: Upregulation
of PTEN by peroxynitrite contributes to cytokine-induced apoptosis
in pancreatic beta-cells. Apoptosis. 15:877–886. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Koul D, Yao Y, Abbruzzese JL, et al: Tumor
suppressor MMAC/PTEN inhibits cytokine-induced NFkappa B activation
without interfering with the IkappaB degradation pathway. J Biol
Chem. 276:11402–11408. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee SY, Kang EJ, Hur GY, et al: Peroxisome
proliferator-activated receptor-gamma inhibits cigarette smoke
solution-induced mucin production in human airway epithelial
(NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 291:L84–L90.
2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim S, Domon-Dell C, Kang J, et al:
Down-regulation of the tumor suppressor PTEN by the tumor necrosis
factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing
kinase/NF-kappaB pathway is linked to a default IkappaB-alpha
autoregulatory loop. J Biol Chem. 279:4285–4291. 2004. View Article : Google Scholar
|
36
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Stambolic V, Suzuki A, de la Pompa JL, et
al: Negative regulation of PKB/Akt-dependent cell survival by the
tumor suppressor PTEN. Cell. 95:29–39. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun H, Lesche R, Li DM, et al: PTEN
modulates cell cycle progression and cell survival by regulating
phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B
signaling pathway. Proc Natl Acad Sci USA. 96:6199–6204. 1999.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gold MR, Scheid MP, Santos L, et al: The B
cell antigen receptor activates the Akt (protein kinase B)/glycogen
synthase kinase-3 signaling pathway via phosphatidylinositol
3-kinase. J Immunol. 163:1894–1905. 1999.PubMed/NCBI
|
40
|
Leslie NR and Downes CP: PTEN function:
how normal cells control it and tumour cells lose it. Biochem J.
382:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Datta SR, Dudek H, Tao X, et al: Akt
phosphorylation of BAD couples survival signals to the
cell-intrinsic death machinery. Cell. 91:231–241. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Salmena L, Carracedo A and Pandolfi PP:
Tenets of PTEN tumor suppression. Cell. 133:403–414. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Perry JM, He XC, Sugimura R, et al:
Cooperation between both Wnt/{beta}-catenin and PTEN/PI3 K/Akt
signaling promotes primitive hematopoietic stem cell self-renewal
and expansion. Genes Dev. 25:1928–1942. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tothova Z and Gilliland DG: FoxO
transcription factors and stem cell homeostasis: Insights from the
hematopoietic system. Cell Stem Cell. 16:140–152. 2007. View Article : Google Scholar
|