1
|
Folkman J: Tumor angiogenesis: therapeutic
implications. N Engl J Med. 285:11821971. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wei A, Zhou D, Ruan J, Cai Y, Xiong C and
Wu G: Anti-tumor and anti-angiogenic effects of Macrothelypteris
viridifrons and its constituents by HPLC-DAD/MS analysis. J
Ethnopharmacol. 139:373–380. 2012. View Article : Google Scholar
|
3
|
Rodriguez-Brenes IA, Komarova NL and
Wodarz D: Tumor growth dynamics: insights into evolutionary
processes. Trends Ecol Evol. 28:597–604. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gacche RN and Meshram RJ: Targeting tumor
micro-environment for design and development of novel
anti-angiogenic agents arresting tumor growth. Prog Biophys Mol
Biol. 1132:333–354. 2013. View Article : Google Scholar
|
5
|
Makrilia N, Lappa T, Xyla V, Nikolaidis I
and Syrigos K: The role of angiogenesis in solid tumours: an
overview. Eur J Intern Med. 20:663–671. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ellis LM and Hicklin DJ: VEGF-targeted
therapy: mechanisms of anti-tumour activity. Nat Rev Cancer.
8:579–591. 2008. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Saharinen P, Eklund L, Pulkki K, Bono P
and Alitalo K: VEGF and angiopoietin signaling in tumor
angiogenesis and metastasis. Trends Mol Med. 17:347–362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kang Z, Jiang W, Luan H, Zhao F and Zhang
S: Cornin induces angiogenesis through PI3K-Akt-eNOS-VEGF signaling
pathway. Food Chem Toxicol. 58:340–346. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yoon H, Choi YL, Song JY, et al: Targeted
inhibition of FAK, PYK2 and BCL-XL synergistically enhances
apoptosis in ovarian clear cell carcinoma cell lines. PLoS One.
9:e885872014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin SH and Shih YW: Antitumor effects of
the flavone chalcone: inhibition of invasion and migration through
the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS
cells. Mol Cell Biochem. 391:47–58. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu J, Wang YS, Zhang J, et al: Focal
adhesion kinase signaling pathway participates in the formation of
choroidal neovascularization and regulates the proliferation and
migration of choroidal microvascular endothelial cells by acting
through HIF-1 and VEGF expression in RPE cells. Exp Eye Res.
88:910–918. 2009. View Article : Google Scholar
|
12
|
China Pharmacopoeia Committee, . Chinese
Pharmacopoeia. 1. Chemical Industry Press; Beijing: pp. p972005
|
13
|
Zou K, Zhao YY and Zhang RY: A cytotoxic
saponin from Albizia julibrissin. Chem Pharm Bull (Tokyo).
54:1211–1212. 2006. View Article : Google Scholar
|
14
|
Won HJ, Han CH, Kim YH, et al: Induction
of apoptosis in human acute leukemia Jurkat T cells by Albizzia
julibrissin extract is mediated via mitochondria-dependent
caspase-3 activation. J Ethnopharmacol. 106:383–389. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu LY, Du FF, Feng L and Qiu LY: Effect
of different components from Albizia julibrissin on HMEC cells and
3B11 cells. Lishizhen Med Mater Med Res. 22:762–764. 2011.
|
16
|
Liang H, Tong WY, Zhao YY, Cui JR and Tu
GZ: An antitumor compound julibroside J28 from Albizia julibrissin.
Bioorg Med Chem Lett. 15:4493–4495. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zou K, Zhao YY and Zhang RY: Triterpenoid
saponins from Cortex Albiziae. Journal of Practical Training of
Medicine. 36:77–87. 2008.
|
18
|
Hua H, Feng L, Zhang XP, Zhang LF and Jin
J: Anti-angiogenic activity of julibroside J8, a natural product
isolated from Albizia julibrissin. Phytomedicine. 16:703–711. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zheng L, Zheng J, Zhang Q, Wang B, Zhao Y
and Wu L: Three new oleanane triterpenoid saponins acetylated with
monoterpenoid acid from Albizia julibrissin. Fitoterapia.
81:859–863. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jung YH, Ha RR, Kwon SH, et al: Anxiolytic
effects of Julibroside C1 isolated from Albizia julibrissin in
mice. Prog Neuropsychopharmacol Biol Psychiatry. 44:184–192. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou MH, Li JG, Wang RL, Liang CQ, Lu YL
and Yang G: Experimental study on hemocytolysis of Rhizoma paridis
total saponins. Chinese Journal of Cerebrovascular Diseases.
18:1611–1612. 2007.
|
22
|
Angulo J, Peir C, Romacho T, et al:
Inhibition of vascular endothelial growth factor (VEGF)-induced
endothelial proliferation, arterial relaxation, vascular
permeability and angiogenesis by dobesilate. Eur J Pharmacol.
667:153–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pinkaew D, Cho SG, Hui DY, et al:
Morelloflavone blocks injury-induced neointimal formation by
inhibiting vascular smooth muscle cell migration. Biochim Biophys
Acta. 1790:31–39. 2009. View Article : Google Scholar
|
24
|
Kim GD, Cheong OJ, Bae SY, Shin J and Lee
SK: 6′-Debromohamacanthin A, a bis (indole) alkaloid, inhibits
angiogenesis by targeting the VEGFR2-mediated PI3K/AKT/mTOR
signaling pathways. Mar Drugs. 11:1087–1103. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Malinda KM: In vivo matrigel migration and
angiogenesis assay. Methods Mol Biol. 467:287–294. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sadanandam A, Rosenbaugh EG, Singh S,
Varney M and Singh RK: Semaphorin 5A promotes angiogenesis by
increasing endothelial cell proliferation, migration and decreasing
apoptosis. Microvasc Res. 79:1–9. 2010. View Article : Google Scholar
|
27
|
Lai SL, Cheah SC, Wong PF, Noor SM and
Mustafa MR: In vitro and in vivo anti-angiogenic activities of
Panduration A. PLoS One. 7:e381032012. View Article : Google Scholar
|
28
|
Pober JS and Sessa WC: Evolving functions
of endothelial cells in inflammation. Nat Rev Immunol. 7:803–815.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Adini A, Fainaru O, Udagawa T, Connor KM,
Folkman J and D’Amato RJ: Matrigel cytometry: a novel method for
quantifying angiogenesis in vivo. J Immunol Methods. 342:78–81.
2009. View Article : Google Scholar
|
30
|
Gomes FG, Nedel F, Alves AM, Nr JE and
Tarquinio SB: Tumor angiogenesis and lymphangiogenesis:
tumor/endothelial crosstalk and cellular/microenvironmental
signaling mechanisms. Life Sci. 92:101–107. 2013. View Article : Google Scholar :
|
31
|
Tian WY, Ma CL, Liu F, Xia LH, Wang L and
Wang JX: Research on the antineoplastic activity of the extract of
alcoholized Albizia cortex in vivo of tumor-bearing mice. College.
22:5–6. 2000.
|
32
|
Yu DH, Qiao SY and Zhao YM: Advance in
study on bark of Albizzia julibrissin. 29:619–624. 2004.
|
33
|
Li Q, Feng L, Shi JJ, Liu LY, Du B and Qiu
LY: Screening of active substances of anti-angiogenesis induced by
tumour cell in Albizia. Chin Tradit Pat Med. 34:744–747. 2012.
|
34
|
Goodwin AM: In vitro assays of
angiogenesis for assessment of angiogenic and anti-angiogenic
agents. Microvasc Res. 74:172–183. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao T, Zhao W, Chen Y, Ahokas RA and Sun
Y: Vascular endothelial growth factor (VEGF)-A: role on cardiac
angiogenesis following myocardial infarction. Microvasc Res.
80:188–194. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Holmqvist K, Cross MJ, Rolny C, et al: The
adaptor protein shb binds to tyrosine 1175 in vascular endothelial
growth factor (VEGF) receptor-2 and regulates VEGF-dependent
cellular migration. J Biol Chem. 279:22267–22275. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao X and Guan JL: Focal adhesion kinase
and its signaling pathways in cell migration and angiogenesis. Adv
Drug Deliv Rev. 63:610–615. 2011. View Article : Google Scholar :
|
38
|
Chen XL, Nam JO, Jean C, et al:
VEGF-induced vascular permeability is mediated by FAK. Dev Cell.
22:146–157. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lee J, Ku T, Yu H, et al: Blockade of
VEGF-A suppresses tumor growth via inhibition of autocrine
signaling through FAK and AKT. Cancer Lett. 318:221–225. 2012.
View Article : Google Scholar
|
40
|
Wu, Gao, Chen, et al: Anti-tumor effects
of a novel chimeric peptide on S180 and H22 xenografts bearing nude
mice. Peptides. 31:850–864. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li Q, Fu GB, Zheng JT, et al: NADPH
oxidase subunit p22 (phox)-mediated reactive oxygen species
contribute to angiogenesis and tumor growth through AKT and ERK1/2
signaling pathways in prostate cancer. Biochim Biophys Acta.
1833.3375–3385. 2013.
|
42
|
Burkovetskaya ME, Levin SG and Godukhin
OV: Neuroprotective effects of interleukin-10 and tumor necrosis
factor-alpha against hypoxia-induced hyperexcitability in
hippocampal slice neurons. Neurosci Lett. 416:236–240. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Carloni S, Carnevali A, Cimino M and
Balduini W: Extended role of necrotic cell death after
hypoxia-ischemia-induced neurodegeneration in the neonatal rat.
Neurobiol Dis. 27:354–361. 2007. View Article : Google Scholar : PubMed/NCBI
|