1
|
Lustig LR and Akil O: Cochlear gene
therapy. Curr Opin Neurol. 25:57–60. 2012. View Article : Google Scholar
|
2
|
Ryan AF, Mullen LM and Doherty JK:
Cellular targeting for cochlear gene therapy. Adv Otorhinolaryngol.
66:99–115. 2009.PubMed/NCBI
|
3
|
Marshall E: Gene therapy what to do when
clear success comes with an unclear risk? Science. 298:510–511.
2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sadelain M: Insertional oncogenesis in
gene therapy: how much of a risk? Gene Ther. 11:569–573. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Pack DW, Hoffman AS, Pun S and Stayton PS:
Design and development of polymers for gene delivery. Nat Rev Drug
Discov. 4:581–593. 2005. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Wang W, Li W, Ma N and Steinhoff G:
Non-viral gene delivery methods. Curr Pharm Biotechnol. 14:46–60.
2013.PubMed/NCBI
|
7
|
Zhou T, Llizo A, Wang C, Xu G and Yang Y:
Nanostructure-induced DNA condensation. Nanoscale. 5:8288–8306.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Godbey WT, Wu KK and Mikos AG:
Poly(ethylenimine) and its role in gene delivery. J Control
Release. 60:149–160. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wanga P, Zhang P, Huang J, Li M and Chen
X: Trichostatin a protects against cisplatin-induced ototoxicity by
regulating expression of genes related to apoptosis and synaptic
function. Neurotoxicology. 37:51–62. 2013. View Article : Google Scholar
|
10
|
Bergen JM, Park IK, Horner PJ and Pun SH:
Nonviral approaches for neuronal delivery of nucleic acids. Pharm
Res. 25:983–998. 2008. View Article : Google Scholar :
|
11
|
Pérez-Martínez FC, Carrión B and Ceña V:
The use of nanoparticles for gene therapy in the nervous system. J
Alzheimers Dis. 31:697–710. 2012.PubMed/NCBI
|
12
|
Kim DK, Park SN, Park KH, et al:
Development of a drug delivery system for the inner ear using
poly(amino acid)-based nanoparticles. Drug Deliv. Jan 22–2014.Epub
ahead of print. View Article : Google Scholar
|
13
|
Pritz CO, Dudás J, Rask-Andersen H,
Schrott-Fischer A and Glueckert R: Nanomedicine strategies for drug
delivery to the ear. Nanomedicine (Lond). 8:1155–1172. 2013.
View Article : Google Scholar
|
14
|
Tan BT, Foong KH, Lee MM and Ruan R:
Polyethylenimine-mediated cochlear gene transfer in guinea pigs.
Arch Otolaryngol Head Neck Surg. 134:884–891. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nel A, Xia T, Mädler L and Li N: Toxic
potential of materials at the nano level. Science. 311:622–627.
2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Calarco A, Bosetti M, Margarucci S, et al:
The genotoxicity of PEI-based nanoparticles is reduced by
acetylation of polyethylenimine amines in human primary cells.
Toxicol Lett. 218:10–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
El-Ansary A and Al-Daihan S: On the
toxicity of therapeutically used nanoparticles: an overview. J
Toxicol. 2009:7548102009. View Article : Google Scholar
|
18
|
Sobkowicz HM, Loftus JM and Slapnick SM:
Tissue culture of the organ of Corti. Acta Otolaryngol Suppl.
502:3–36. 1993.PubMed/NCBI
|
19
|
Kichler A: Gene transfer with modified
polyethylenimines. J Gene Med. 1:S3–S10. 2004. View Article : Google Scholar
|
20
|
Akinc A, Thomas M, Klibanov AM and Langer
R: Exploring polyethylenimine-mediated DNA transfection and the
proton sponge hypothesis. J Gene Med. 7:657–663. 2005. View Article : Google Scholar
|
21
|
Zhang W, Zhang Y, Löbler M, et al: Nuclear
entry of hyperbranched polylysine nanoparticles into cochlear
cells. Int J Nanomedicine. 6:535–546. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zou J, Saulnier P, Perrier T, et al:
Distribution of lipid nanocapsules in different cochlear cell
populations after round window membrane permeation. J Biomed Mater
Res B Appl Biomater. 87:10–18. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Roy S, Johnston AH, Newman TA, et al:
Cell-specific targeting in the mouse inner ear using nanoparticles
conjugated with a neurotrophin-derived peptide ligand: potential
tool for drug delivery. Int J Pharm. 390:214–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang MX and Szoka FC: The influence of
polymer structure on the interactions of cationic polymers with DNA
and morphology of the resulting complexes. Gene Ther. 4:823–832.
1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shim MS and Kwon YJ: Controlled
cytoplasmic and nuclear localization of plasmid DNA and siRNA by
differentially tailored polyethylenimine. J Control Release.
133:206–213. 2009. View Article : Google Scholar
|
26
|
Boussif O, Lezoualch F, Zanta MA, et al: A
versatile vector for gene and oligonucleotide transfer into cells
in culture and-in vivo polyethylenimine. Proc Natl Acad Sci USA.
92:7297–7301. 1995. View Article : Google Scholar
|
27
|
Godbey WT, Barry MA, Saggau P, Wu KK and
Mikos AG: Poly(ethylenimine)-mediated transfection: a new paradigm
for gene delivery. J Biomed Mater Res. 51:321–328. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Patnaik S and Gupta KC: Novel
polyethylenimine-derived nanoparticles for in vivo gene delivery.
Expert Opin Drug Deliv. 10:215–228. 2013. View Article : Google Scholar
|
29
|
Behr JP: The proton sponge: a trick to
enter cells the viruses did not exploit. Chimia International
Journal for Chemistry. 51:34–36. 1997.
|
30
|
Choosakoonkriang S, Lobo BA, Koe GS, Koe
JG and Middaugh CR: Biophysical characterization of PEI/DNA
complexes. J Pharm Sci. 92:1710–1722. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ruponen M, Honkakoski P, Rönkkö S,
Pelkonen J, Tammi M and Urtti A: Extracellular and intracellular
barriers in non-viral gene delivery. J Control Release. 93:213–217.
2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wiethoff CM, Smith JG, Koe GS and Middaugh
CR: The potential role of proteoglycans in cationic lipid-mediated
gene delivery. Studies of the interaction of cationic lipid-DNA
complexes with model glycosaminoglycans. J Biol Chem.
276:32806–32813. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Artzner F, Zantl R and Rädler JO:
Lipid-DNA and lipid-polyelectrolyte mesophases: structure and
exchange kinetics. Cell Mol Biol (Noisy-le-grand). 46:967–978.
2000.
|
34
|
Mislick KA and Baldeschwieler JD: Evidence
for the role of proteoglycans in cation-mediated gene transfer.
Proc Natl Acad Sci USA. 93:12349–12354. 1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wiethoff CM and Middaugh CR: Barriers to
nonviral gene delivery. J Pharm Sci. 92:203–217. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Payne CK: Imaging gene delivery with
fluorescence microscopy. Nanomedicine (Lond). 2:847–860. 2007.
View Article : Google Scholar
|
37
|
De Smedt SC, Demeester J and Hennink WE:
Cationic polymer based gene delivery systems. Pharm Res.
17:113–126. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pollard H, Remy JS, Loussouarn G,
Demolombe S, Behr JP and Escande D: Polyethylenimine but not
cationic lipids promotes transgene delivery to the nucleus in
mammalian cells. J Biol Chem. 273:7507–7511. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang T, Upponi JR and Torchilin VP: Design
of multifunctional non-viral gene vectors to overcome physiological
barriers: dilemmas and strategies. Int J Pharm. 427:3–20. 2012.
View Article : Google Scholar
|
40
|
Grosse S, Aron Y, Thévenot G, Monsigny M
and Fajac I: Cytoskeletal involvement in the cellular trafficking
of plasmid/PEI derivative complexes. J Control Release.
122:111–117. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Suh J, Wirtz D and Hanes J: Efficient
active transport of gene nanocarriers to the cell nucleus. Proc
Natl Acad Sci USA. 100:3878–3882. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bausinger R, von Gersdorff K, Braeckmans
K, et al: The transport of nanosized gene carriers unraveled by
live-cell imaging. Angew Chem Int Ed Engl. 45:1568–1572. 2006.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kulkarni RP, Wu DD, Davis ME and Fraser
SE: Quantitating intracellular transport of polyplexes by
spatio-temporal image correlation spectroscopy. Proc Natl Acad Sci
USA. 102:7523–7528. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pante N and Kann M: Nuclear pore complex
is able to transport macromolecules with diameters of about 39 nm.
Mol Biol Cell. 13:425–434. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Grosse S, Aron Y, Thévenot G, François D,
Monsigny M and Fajac I: Potocytosis and cellular exit of complexes
as cellular pathways for gene delivery by polycations. J Gene Med.
7:1275–1286. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Godbey WT, Wu KK and Mikos AG: Tracking
the intracellular path of poly(ethylenimine)/DNA complexes for gene
delivery. Proc Natl Acad Sci USA. 96:5177–5181. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Abdallah B, Hassan A, Benoist C, Goula D,
Behr JP and Demeneix BA: A powerful nonviral vector for in vivo
gene transfer into the adult mammalian brain: polyethylenimine. Hum
Gene Ther. 7:1947–1954. 1996. View Article : Google Scholar : PubMed/NCBI
|
48
|
Suzuki M, Kitamura K and Nomura Y: Anionic
sites of the basement membrane of the labyrinth. Acta Otolaryngol
Suppl. 481:112–115. 1991. View Article : Google Scholar : PubMed/NCBI
|
49
|
Suzuki M and Kaga K: Effect of cisplatin
on the negative charge barrier in strial vessels of the guinea
pigs. A transmission electron microscopic study using
polyethyleneimine molecules. Eur Arch Otorhinolaryngol.
253:351–355. 1996. View Article : Google Scholar
|
50
|
Yamasoba T, Suzuki M and Kaga K: Influence
of chronic kanamycin administration on basement membrane anionic
sites in the labyrinth. Hear Res. 102:116–124. 1996. View Article : Google Scholar : PubMed/NCBI
|
51
|
Suzuki M, Yamasoba T and Kaga K:
Development of the blood-labyrinth barrier in the rat. Hear Res.
116:107–112. 1998. View Article : Google Scholar : PubMed/NCBI
|
52
|
Breunig M, Lungwitz U, Liebl R, et al:
Gene delivery with low molecular weight linear polyethylenimines. J
Gene Med. 7:1287–1298. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Godbey WT, Wu KK and Mikos AG: Size
matters: molecular weight affects the efficiency of
poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res.
45:268–275. 1999. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wightman L, Kircheis R, Rössler V, et al:
Different behavior of branched and linear polyethylenimine for gene
delivery in vitro and in vivo. J Gene Med. 3:362–372. 2001.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Goula D, Remy JS, Erbacher P, et al: Size,
diffusibility and transfection performance of linear PEI/DNA
complexes in the mouse central nervous system. Gene Ther.
5:712–717. 1998. View Article : Google Scholar : PubMed/NCBI
|
56
|
Goula D, Benoist C, Mantero S, Merlo G,
Levi G and Demeneix BA: Polyethylenimine-based intravenous delivery
of transgenes to mouse lung. Gene Ther. 5:1291–1295. 1998.
View Article : Google Scholar
|
57
|
Bragonzi A, Dina G, Villa A, et al:
Biodistribution and transgene expression with nonviral cationic
vector/DNA complexes in the lungs. Gene Ther. 7:1753–1760. 2000.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Maynard AD, Aitken RJ, Butz T, et al: Safe
handling of nanotechnology. Nature. 444:267–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
59
|
Boeckle S, von Gersdorff K, van der Piepen
S, Culmsee C, Wagner E and Ogris M: Purification of
polyethylenimine polyplexes highlights the role of free polycations
in gene transfer. J Gene Med. 6:1102–1111. 2004. View Article : Google Scholar : PubMed/NCBI
|
60
|
Thomas M, Ge Q, Lu JJ, Chen J and Klibanov
AM: Cross-linked small polyethylenimines: while still nontoxic,
deliver DNA efficiently to mammalian cells in vitro and in vivo.
Pharm Res. 22:373–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
61
|
Forrest ML, Koerber JT and Pack DW: A
degradable polyethylenimine derivative with low toxicity for highly
efficient gene delivery. Bioconjug Chem. 14:934–940. 2003.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Xiong MP, Forrest ML, Ton G, Zhao A,
Davies NM and Kwon GS: Poly(aspartate-g-PEI800), a polyethylenimine
analogue of low toxicity and high transfection efficiency for gene
delivery. Biomaterials. 28:4889–4900. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Fischer D, Li Y, Ahlemeyer B, Krieglstein
J and Kissel T: In vitro cytotoxicity testing of polycations:
influence of polymer structure on cell viability and hemolysis.
Biomaterials. 24:1121–1131. 2003. View Article : Google Scholar : PubMed/NCBI
|
64
|
Kabanov AV: Polymer genomics: an insight
into pharmacology and toxicology of nanomedicines. Adv Drug Deliv
Rev. 58:1597–1621. 2006. View Article : Google Scholar : PubMed/NCBI
|
65
|
Moghimi SM, Symonds P, Murray JC, Hunter
AC, Debska g and Szewczyk A: A two-stage
poly(ethylenimine)-mediated cytotoxicity: implications for gene
transfer/therapy. Mol Ther. 11:990–995. 2005. View Article : Google Scholar : PubMed/NCBI
|
66
|
Florea BI, Meaney C, Junginger HE and
Borchard G: Transfection efficiency and toxicity of
polyethylenimine in differentiated Calu-3 and nondifferentiated
COS-1 cell cultures. AAPS PharmSci. 4:E122002. View Article : Google Scholar : PubMed/NCBI
|
67
|
Klemm AR, Young D and Lloyd JB: Effects of
polyethyleneimine on endocytosis and lysosome stability. Biochem
Pharmacol. 56:41–46. 1998. View Article : Google Scholar : PubMed/NCBI
|
68
|
Lin CW, Jan MS, Kuo JH, Hsu LJ and Lin YS:
Protective role of autophagy in branched polyethylenimine (25K)-
and poly(L-lysine) (30–70K)-induced cell death. Eur J Pharm Sci.
47:865–874. 2012. View Article : Google Scholar : PubMed/NCBI
|
69
|
Park MV, Lankveld DP, van Loveren H and de
Jong WH: The status of in vitro toxicity studies in the risk
assessment of nanomaterials. Nanomedicine (Lond). 4:669–685. 2009.
View Article : Google Scholar
|
70
|
Fako VE and Furgeson DY: Zebrafish as a
correlative and predictive model for assessing biomaterial
nanotoxicity. Adv Drug Deliv Rev. 61:478–486. 2009. View Article : Google Scholar : PubMed/NCBI
|
71
|
Rizzo LY, Golombek SK, Mertens ME, et al:
In vivo nanotoxicity testing using the zebrafish embryo assay. J
Mater Chem B Mater Biol Med. 1:3918–3925. 2013. View Article : Google Scholar
|
72
|
Caruthers SD, Wickline SA and Lanza GM:
Nanotechnological applications in medicine. Curr Opin Biotechnol.
18:26–30. 2007. View Article : Google Scholar : PubMed/NCBI
|
73
|
Lai DY: Toward toxicity testing of
nanomaterials in the 21st century: a paradigm for moving forward.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 4:1–15. 2012.
View Article : Google Scholar
|