1
|
Dumont RJ, Okonkwo DO, Verma S, Hurlbert
RJ, Boulos PT, Ellegala DB and Dumont AS: Acute spinal cord injury,
part I: Pathophysiologic mechanisms. Clin Neuropharmacol.
24:254–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kwon BK, Tetzlaff W, Grauer JN, Beiner J
and Vaccaro AR: Pathophysiology and pharmacologic treatment of
acute spinal cord injury. Spine J. 4:451–464. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hall ED and Springer JE: Neuroprotection
and acute spinal cord injury: a reappraisal. NeuroRx. 1. pp.
80–100. 2004, View Article : Google Scholar
|
4
|
Beck KD, Nguyen HX, Galvan MD, Salazar DL,
Woodruff TM and Anderson AJ: Quantitative analysis of cellular
inflammation after traumatic spinal cord injury: evidence for a
multiphasic inflammatory response in the acute to chronic
environment. Brain. 133. pp. 433–447. 2010, View Article : Google Scholar
|
5
|
Duz B, Kaplan M, Bilgic S, et al: Does
hypothermic treatment provide an advantage after spinal cord injury
until surgery? An experimental study. Neurochem Res. 34:407–410.
2009. View Article : Google Scholar
|
6
|
Diaz-Ruiza A, Maldonadoc PD,
Mendez-Armenta M, et al: Activation of heme oxygenase recovers
motor function after spinal cord injury in rats. Neurosci Lett.
556:26–31. 2013. View Article : Google Scholar
|
7
|
Maggio DM, Chatzipanteli K, Masters N,
Patel SP, Dietrich WD and Pearse DD: Acute molecular perturbation
of inducible nitric oxide synthase with an antisense approach
enhances neuronal preservation and functional recovery after
contusive spinal cord injury. J Neurotrauma. 29:2244–2249. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kubeck JP, Merola A, Mathur S, et al: End
organ effects of high-dose human equivalent methylpredniso-lone in
a spinal cord injury rat model. Spine. 31:257–261. 2006. View Article : Google Scholar
|
9
|
Kahraman S, Düz B, Kayali H, et al:
Effects of methylprednisolone and hyperbaric oxygen on oxidative
status after experimental spinal cord injury: a comparative study
in rats. Neurochem Res. 32:1547–1551. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gamache FW Jr, Myers RA, Ducker TB, et al:
The clinical application of hyperbaric oxygen therapy in spinal
cord injury: a preliminary report. Surg Neurol. 15:85–87. 1981.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kindwall EP, Gottlieb LJ and Larson DL:
Hyperbaric oxygen therapy in plasticsurgery: a review article.
Plast Reconstr Surg. 88:898–908. 1991. View Article : Google Scholar : PubMed/NCBI
|
12
|
Petrilli V, Dostert C, Muruve DA, et al:
The inflammasome: a danger sensing complex triggering innate
immunity. Current Opin Immunol. 19:615–622. 2007. View Article : Google Scholar
|
13
|
Lamkanfi M and Dixit M: Inflammasomes:
guardians of cytosolic sanctity. Immunol Rev. 227:95–105. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Villegas LR, Field C, Kluck D, et al:
Superoxide dismutase mimetic attenuates hypoxia-induced pulmonary
vascular remodeling, ECM hyaluronan expression, and NALP3-mediated
inflammation. Free Radical Bio Med. 10:3642011.
|
15
|
Basso DM, Beattie MS and Bresnahan JC:
Graded histological and locomotor outcomes after spinal cord
contusion using the NYU weight drop device versus transaction. Exp
Neurol. 139. pp. 244–256. 1996, View Article : Google Scholar
|
16
|
Martinon F and Tschopp J: NLRs join TLRs
as innate sensors of pathogens. Trends Immunol. 26:447–454. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Aqostin L, Martinon F, Burns K, et al:
NALP3 forms an L-1beta-processing inflammasome with increased
activity in Muckle-Wells autoinflammatory disorder. Immunity.
20:319–325. 2004. View Article : Google Scholar
|
18
|
Chen M, Wang H, Chen W, et al: Regulation
of adaptive immunity by the NLRP3 inflammasome. Int
Immunopharmacol. 11:549–555. 2011. View Article : Google Scholar
|
19
|
Bao F, Dekaban GA and Weaver LC:
Anti-CD11d antibody treatment reduces free radical formation and
cell death in the injured spinal cord of rats. J Neurochem.
94:1361–1373. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hachmeister JE, Valluru L, Bao F and Liu
D: Mn (III) tetrakis (4-benzoic acid) porphyrin administered into
the intrathecal space reduces oxidative damage and neuron death
after spinal cord injury: a comparison with methylprednisolone. J
Neurotrauma. 23:1766–1778. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Allen IC, Scull MA, Moore CB, et al: The
NLRP3 inflammasome mediates in vivo innate immunity to influenza A
virus through recognition of viral RNA. Immunity. 30:556–565. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kauppinen A, Niskanen H, Suuronen T,
Kinnunen K, Salminen A and Kaarniranta K: Oxidative stress
activates NLRP3 inflammasomes in ARPE-19 cells - implications for
age-related macular degeneration (AMD). Immunol Lett. 147:29–33.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Juliana C, Fernandes-Alnemri T, Kang S,
Farias A, Qin F and Alnemri ES: Non-transcriptional priming and
deubiquitination regulate NLRP3 inflammasome activation. J Biol
Chem. 287:36617–36622. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Menu P and Vince JE: The NLRP3
inflammasome in health and disease: the good, the bad and the ugly.
Clin Exp Immunol. 166:1–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lawlor KE and Vince JE: Ambiguities in
NLRP3 in flammasome regulation: is there a role for mitochondria?
Biochim Biophys Acta. 10:08–14. 2013.
|
26
|
Vince IE, Wong WW, Gentle I, et al:
Inhibitor of apoptosis proteins limit RIP3 kinase-dependent
interleukin-1 activation. Immunity. 36:215–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yaman O, Yaman B, Aydin F, Var A and Temiz
C: Hyperbaric oxygen treatment in the experimental spinal cord
injury model. Spine J. 14:2184–2194. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ishihara H, Kanamori M, Kawaguchi Y, Osada
R, Ohmori K and Matsui H: Prediction of neurologic outcome in
patients with spinal cord injury by using hyperbaric oxygen
therapy. J Orthop Sci. 6:385–389. 2001. View Article : Google Scholar
|
29
|
Topuz K, Colak A, Cemil B, et al: Combined
hyperbaric oxygen and hypothermia treatment on oxidative stress
parameters after spinal cord injury: an experimental study. Arch
Med Res. 41:506–512. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu Y, Matsuyama Y, Yanase M, et al:
Effects of hyperbaric oxygen on GDNF expression and apoptosis in
spinal cord injury. Neuroreport. 15:2369–2373. 2004. View Article : Google Scholar
|
31
|
Rubartelli A: Redox control of NLRP3
inflammasome activation in health and disease. J Leukoc Biol.
92:951–958. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu S, Xu GY, Johnson KM, et al:
Regulation of interleukin-1beta by the interleukin-1 receptor
antagonist in the glutamate-injured spinal cord: endogenous
neuroprotection. Brain Res. 1231:63–74. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sung CS, Wen ZH, Chang WK, et al:
Intrathecal interleukin-1beta administration induces thermal
hyperalgesia by activating inducible nitric oxide synthase
expression in the rat spinal cord. Brain Res. 1015:145–153. 2004.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Martinon F, Burns K and Tschopp J: The
inflammasome: a molecular platform triggering activation of
inflammatory caspases and processing of pro IL-beta. Mol Cell.
10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kool M, Pétrilli V, De Smedt T, et al:
Cutting edge: alum adjuvant stimulates inflammatory dendritic cells
through activation of the NALP3 inflammasome. J Immunol.
181:3755–3759. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang J, Liu X, Zhou Y, Wang G, Gao C and
Su Q: Hyperbaric oxygen alleviates experimental (spinal cord)
injury by downregulating HMGB1/NF-κB expression. Spine.
38:1641–1648. 2013. View Article : Google Scholar
|