1
|
Higgins DF, Kimura K, Bernhardt, et al:
Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of
epithelial-to-mesen-chymal transition. J Clin Invest.
117:3810–3820. 2007.PubMed/NCBI
|
2
|
Wynn TA: Cellular and molecular mechanisms
of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar
|
3
|
Wynn TA: Common and unique mechanisms
regulate fibrosis in various fibroproliferative diseases. J Clin
Invest. 117:524–529. 2007. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Romano E, Manetti M, Guiducci S,
Ceccarelli C, Allanore Y and Matucci-Cerinic M: The genetics of
systemic sclerosis: an update. Clin Exp Rheumatol. 29:S75–S86.
2011.PubMed/NCBI
|
5
|
Zell S, Schmitt R, Witting S, Kreipe HH,
Hussein K and Becker JU: Hypoxia Induces Mesenchymal Gene
Expression in Renal Tubular Epithelial Cells: An in vitro Model of
Kidney Transplant Fibrosis. Nephron Extra. 3:50–58. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu Y: Cellular and molecular mechanisms
of renal fibrosis. Nat Rev Nephrol. 7:684–696. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Y, Sun Y, Liu F, et al: Norcantharidin
inhibits renal interstitial fibrosis by blocking the tubular
epithelial-mesenchymal transition. PLoS One. 8:e663562013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kalluri R and Neilson EG:
Epithelial-mesenchymal transition and its implications for
fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kriz W, Kaissling B and Le Hir M:
Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or
fantasy? J Clin Invest. 121:468–474. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barnes JL and Glass WF II: Renal
interstitial fibrosis: a critical evaluation of the origin of
myofibroblasts. Contrib Nephrol. 169:73–93. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu Y: New insights into
epithelial-mesenchymal transition in kidney fibrosis. J Am Soc
Nephrol. 21:212–222. 2010. View Article : Google Scholar
|
12
|
Nisticò P, Bissell MJ and Radisky DC:
Epithelial-mesenchymal transition: general principles and
pathological relevance with special emphasis on the role of matrix
metalloproteinases. Cold Spring Harb Perspect Biol. 4:a0119082012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
López-Hernández FJ and López-Novoa JM:
Role of TGF-β in chronic kidney disease: an integration of tubular,
glomerular and vascular effects. Cell Tissue Res. 347:141–154.
2012. View Article : Google Scholar
|
14
|
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier
C and Brown RA: Myofibroblasts and mechano-regulation of connective
tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Berk BC, Fujiwara K and Lehoux S: ECM
remodeling in hypertensive heart disease. J Clin Invest.
117:568–575. 2007. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bartel DP: MicroRNAs: target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Chau BN and Brenner DA: What goes up must
come down: the emerging role of microRNA in fibrosis. Hepatology.
53:4–6. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pinzani M, Rosselli M and Zuckermann M:
Liver cirrhosis. Best Pract Res Clin Gastroenterol. 25:281–290.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Krenning G, Zeisberg EM and Kalluri R: The
origin of fibroblasts and mechanism of cardiac fibrosis. J Cell
Physiol. 225:631–637. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wynn TA: Integrating mechanisms of
pulmonary fibrosis. J Exp Med. 208:1339–1350. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang B, Koh P, Winbanks C, et al: miR-200a
prevents renal fibrogenesis through repression of TGF-β2
expression. Diabetes. 60:280–287. 2011. View Article : Google Scholar :
|
24
|
Zhong X, Chung AC, Chen HY, Meng XM and
Lan HY: Smad3-mediated upregulation of miR-21 promotes renal
fibrosis. J Am Soc Nephrol. 22:1668–1681. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kato M, Zhang J, Wang M, et al:
MicroRNA-192 in diabetic kidney glomeruli and its function in
TGF-β-induced collagen expression via inhibition of E-box
repressors. Proc Natl Acad Sci USA. 104:3432–3437. 2007. View Article : Google Scholar
|
26
|
Neal CS, Michael MZ, Rawlings LH, Van der
Hoek MB and Gleadle JM: The VHL-dependent regulation of microRNAs
in renal cancer. BMC Med. 8:642010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang H, Peng W, Shen X, Huang Y, Ouyang X
and Dai Y: Circulating levels of inflammation-associated miR-155
and endothelial-enriched miR-126 in patients with end-stage renal
disease. Braz J Med Biol Res. 45:1308–1314. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Anglicheau D, Sharma VK, Ding R, et al:
MicroRNA expression profiles predictive of human renal allograft
status. Proc Natl Acad Sci USA. 106:5330–5335. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pottier N, Maurin T, Chevalier B, et al:
Identification of keratinocyte growth factor as a target of
microRNA-155 in lung fibroblasts: implication in
epithelial-mesenchymal interactions. PLoS One. 4:e67182009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang P, Hou J, Lin L, et al: Inducible
microRNA-155 feedback promotes type I IFN signaling in antiviral
innate immunity by targeting suppressor of cytokine signaling 1. J
Immunol. 185:6226–6233. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Singh P, Ricksten SE, Bragadottir G,
Redfors B and Nordquist L: Renal oxygenation and haemodynamics in
acute kidney injury and chronic kidney disease. Clin Exp Pharmacol
Physiol. 40:138–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kishore R, Verma SK, Mackie AR, et al:
Bone marrow progenitor cell therapy-mediated paracrine regulation
of cardiac miRNA-155 modulates fibrotic response in diabetic
hearts. PLoS One. 8:e601612013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Harris AL: Hypoxia - a key regulatory
factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Semenza GL: Hypoxia-inducible factors in
physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Greer SN, Metcalf JL, Wang Y and Ohh M:
The updated biology of hypoxia-inducible factor. EMBO J.
31:2448–2460. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Higgins DF, Kimura K, Iwano M and Haase
VH: Hypoxia-inducible factor signaling in the development of tissue
fibrosis. Cell Cycle. 7:1128–1132. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bruning U, Cerone L, Neufeld Z, et al:
MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha
activity during prolonged hypoxia. Mol Cell Biol. 31:4087–4096.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Czyzyk-Krzeska MF and Zhang X: MiR-155 at
the heart of oncogenic pathways. Oncogene. 33:677–678. 2014.
View Article : Google Scholar :
|
39
|
Hills CE and Squires PE: The role of
TGF-beta and epithelial-to mesenchymal transition in diabetic
nephropathy. Cytokine Growth Factor Rev. 22:131–139.
2011.PubMed/NCBI
|
40
|
Kage H and Borok Z: EMT and interstitial
lung disease: a mysterious relationship. Curr Opin Pulm Med.
18:517–523. 2012.PubMed/NCBI
|