1
|
Bydon M, Papadimitriou K, Witham T, et al:
Novel therapeutic targets in chordoma. Expert Opin Ther Targets.
16:1139–1143. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Walcott BP, Nahed BV, Mohyeldin A, Coumans
JV, Kahle KT and Ferreira MJ: Chordoma: current concepts,
management and future directions. Lancet Oncol. 13:e69–e76. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
DeLaney TF, Duan Z and Hornicek FJ:
Proteomic profiling of chordoma. J Surg Oncol. 102:7192010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Diaz RJ and Cusimano MD: The biological
basis for modern treatment of chordoma. J Neurooncol. 104:411–422.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang C, Schwab JH, Schoenfeld AJ, et al: A
novel target for treatment of chordoma: signal transducers and
activators of transcription 3. Mol Cancer Ther. 8:2597–2605. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu WK, Lee CW, Cho CH, et al: MicroRNA
dysregulation in gastric cancer: a new player enters the game.
Oncogene. 29:5761–5771. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nicoloso MS, Spizzo R, Shimizu M, Rossi S
and Calin GA: MicroRNAs - the micro steering wheel of tumour
metastases. Nat Rev Cancer. 9:293–302. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Duan Z, Shen J, Yang X, et al: Prognostic
significance of miRNA-1 (miR-1) expression in patients with
chordoma. J Orthop Res. 32:695–701. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bayrak OF, Gulluoglu S, Aydemir E, et al:
MicroRNA expression profiling reveals the potential function of
microRNA-31 in chordomas. J Neurooncol. 115:143–151. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Duan Z, Choy E, Nielsen GP, et al:
Differential expression of microRNA (miRNA) in chordoma reveals a
role for miRNA-1 in Met expression. J Orthop Res. 28:746–752.
2010.
|
11
|
Mo F, Wyatt AW, Sun Y, et al: Systematic
identification and characterization of RNA editing in prostate
tumors. PloS One. 9:e1014312014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Valles I, Pajares MJ, Segura V, et al:
Identification of novel deregulated RNA metabolism-related genes in
non-small cell lung cancer. PloS One. 7:e420862012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chan TH, Lin CH, Qi L, et al: A disrupted
RNA editing balance mediated by ADARs (Adenosine DeAminases that
act on RNA) in human hepatocellular carcinoma. Gut. 63:832–843.
2014. View Article : Google Scholar :
|
14
|
Maas S, Patt S, Schrey M and Rich A:
Underediting of glutamate receptor GluR-B mRNA in malignant
gliomas. Proc Natl Acad Sci USA. 98:14687–14692. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Choudhury Y, Tay FC, Lam DH, et al:
Attenuated adenosine-to-inosine editing of microRNA-376a* promotes
invasiveness of glioblastoma cells. J Clin Invest. 122:4059–4076.
2012. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Liu WH, Chen CH, Yeh KH, et al:
ADAR2-mediated editing of miR-214 and miR-122 precursor and
antisense RNA transcripts in liver cancers. PloS One. 8:e819222013.
View Article : Google Scholar
|
17
|
Yang W, Chendrimada TP, Wang Q, et al:
Modulation of microRNA processing and expression through RNA
editing by ADAR deaminases. Nat Struct Mol Biol. 13:13–21. 2006.
View Article : Google Scholar
|
18
|
Kawahara Y, Zinshteyn B, Sethupathy P,
Iizasa H, Hatzigeorgiou AG and Nishikura K: Redirection of
silencing targets by adenosine-to-inosine editing of miRNAs.
Science. 315:1137–1140. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Berindan-Neagoe I and Calin GA: Molecular
Pathways: microRNAs, cancer cells, and microenvironment. Clin
Cancer Res. 20:6247–6253. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Y, Schiff D, Park D and Abounader R:
MicroRNA-608 and microRNA-34a regulate chordoma malignancy by
targeting EGFR, Bcl-xL and MET. PloS One. 9:e915462014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fortunato O, Boeri M, Moro M, et al:
Mir-660 is downregulated in lung cancer patients and its
replacement inhibits lung tumorigenesis by targeting MDM2-p53
interaction. Cell Death Dis. 5:e15642014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Finlay-Schultz J, Cittelly DM, Hendricks
P, et al: Progesterone downregulation of miR-141 contributes to
expansion of stem-like breast cancer cells through maintenance of
progesterone receptor and Stat5a. Oncogene. Sep 22–2014.Epub ahead
of print. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jia H, Zhang Z, Zou D, et al: MicroRNA-10a
is down-regulated by DNA methylation and functions as a tumor
suppressor in gastric cancer cells. PLoS one. 9:e880572014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hudson J, Duncavage E, Tamburrino A, et
al: Overexpression of miR-10a and miR-375 and downregulation of
YAP1 in medullary thyroid carcinoma. Exp Mol Pathol. 95:62–67.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Markou A, Sourvinou I, Vorkas PA, Yousef
GM and Lianidou E: Clinical evaluation of microRNA expression
profiling in non small cell lung cancer. Lung Cancer. 81:388–396.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang L, Huang Q, Chang J, Wang E and Qiu
X: MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in
lung cancer cells. Exp Lung Res. 37:387–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo X, Wu Y and Hartley RS: MicroRNA-125a
represses cell growth by targeting HuR in breast cancer. RNA Biol.
6:575–583. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hoppe R, Achinger-Kawecka J, Winter S, et
al: Increased expression of miR-126 and miR-10a predict prolonged
relapse-free time of primary oestrogen receptor-positive breast
cancer following tamoxifen treatment. Eur J Cancer. 49:3598–3608.
2013. View Article : Google Scholar : PubMed/NCBI
|