1
|
Weir HK, Thun MJ, Hankey BF, et al: Annual
report to the nation on the status of cancer, 1975–2000, featuring
the uses of surveillance data for cancer prevention and control. J
Natl Cancer Inst. 95:1276–1299. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Greenlee RT, Murray T, Bolden S and Wingo
PA: Cancer statistics, 2000. CA Cancer J Clin. 50:7–33. 2000.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Bray F, Center MM, et al: Global
cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cho KR and Vogelstein B: Genetic
alterations in the adenoma-carcinoma sequence. Cancer.
70:1727–1731. 1992. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vogelstein B and Kinzler KW: The multistep
nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bhatti I, Lee A, Lund J and Larvin M:
Small RNA: a large contributor to carcinogenesis? J Gastrointest
Surg. 13:1379–1388. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schetter AJ and Harris CC: Alterations of
microRNAs contribute to colon carcinogenesis. Semin Oncol.
38:734–742. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu WK, Law PT, Lee CW, et al: MicroRNA in
colorectal cancer: from benchtop to bedside. Carcinogenesis.
32:247–253. 2011. View Article : Google Scholar
|
10
|
Li H, Kloosterman W and Fekete DM:
MicroRNA-183 family members regulate sensorineural fates in the
inner ear. J Neurosci. 30:3254–3263. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu Q, Sun W, Okano K, et al: Sponge
transgenic mouse model reveals important roles for the microRNA-183
(miR-183)/96/182 cluster in postmitotic photoreceptors of the
retina. J Biol Chem. 286:31749–31760. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu S, Witmer PD, Lumayag S, Kovacs B and
Valle D: MicroRNA (miRNA) transcriptome of mouse retina and
identification of a sensory organ-specific miRNA cluster. J Biol
Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Krol J, Busskamp V, Markiewicz I, et al:
Characterizing light-regulated retinal microRNAs reveals rapid
turnover as a common property of neuronal microRNAs. Cell.
141:618–631. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Weston MD, Pierce ML, Jensen-Smith HC, et
al: MicroRNA-183 family expression in hair cell development and
requirement of microRNAs for hair cell maintenance and survival.
Dev Dyn. 240:808–819. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu M, Huang C, Gan K, et al: LRRC4, a
putative tumor suppressor gene, requires a functional leucine-rich
repeat cassette domain to inhibit proliferation of glioma cells in
vitro by modulating the extracellular signal-regulated
kinase/protein kinase B/nuclear factor-kappaB pathway. Mol Biol
Cell. 17:3534–3542. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sarver AL, French AJ, Borralho PM, et al:
Human colon cancer profiles show differential microRNA expression
depending on mismatch repair status and are characteristic of
undifferentiated proliferative states. BMC Cancer. 9:4012009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hamfjord J, Stangeland AM, Hughes T, et
al: Differential expression of miRNAs in colorectal cancer:
comparison of paired tumor tissue and adjacent normal mucosa using
high-throughput sequencing. PLoS One. 7:e341502012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Piepoli A1, Tavano F, Copetti M, et al:
Mirna expression profiles identify drivers in colorectal and
pancreatic cancers. PLoS One. 7:e336632012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Arndt GM1, Dossey L, Cullen LM, et al:
Characterization of global microRNA expression reveals oncogenic
potential of miR-145 in metastatic colorectal cancer. BMC Cancer.
9:3742009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bandrés E1, Cubedo E, Agirre X, et al:
Identification by Real-time PCR of 13 mature microRNAs
differentially expressed in colorectal cancer and non-tumoral
tissues. Mol Cancer. 5:292006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sarver AL, Li L and Subramanian S:
MicroRNA miR-183 functions as an oncogene by targeting the
transcription factor EGR1 and promoting tumor cell migration.
Cancer Res. 70:9570–9580. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gregersen LH, Jacobsen AB, Frankel LB, et
al: MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS
One. 5:e88362010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tazawa H, Tsuchiya N, Izumiya M and
Nakagama H: Tumor-suppressive miR-34a induces senescence-like
growth arrest through modulation of the E2F pathway in human colon
cancer cells. Proc Natl Acad Sci USA. 104:15472–15477. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Han Y, Chen J, Zhao X, et al: MicroRNA
expression signatures of bladder cancer revealed by deep
sequencing. PLoS One. 6:e182862011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mihelich BL, Khramtsova EA, Arva N, et al:
miR-183-96-182 cluster is overexpressed in prostate tissue and
regulates zinc homeostasis in prostate cells. J Biol Chem.
286:44503–44511. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamada Y, Enokida H, Kojima S, et al:
MiR-96 and miR-183 detection in urine serve as potential tumor
markers of urothelial carcinoma: correlation with stage and grade,
and comparison with urinary cytology. Cancer Sci. 102:522–529.
2011. View Article : Google Scholar
|
28
|
Weeraratne SD, Amani V, Teider N, et al:
Pleiotropic effects of miR-183~96~182 converge to regulate cell
survival, proliferation and migration in medulloblastoma. Acta
Neuropathol. 123:539–552. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang H, Bian Y, Tu C, et al: The
miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes
cells to chemotherapy in gliomas. Curr Cancer Drug Targets.
13:221–231. 2013. View Article : Google Scholar
|