1
|
Di Croce L and Helin K: Transcriptional
regulation by Polycomb group proteins. Nat Struct Mol Biol.
20:1147–1155. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chang CJ and Hung MC: The role of EZH2 in
tumour progression. Br J Cancer. 106:243–247. 2012. View Article : Google Scholar :
|
3
|
Forbes MS: Cell Structure. Cell Physiology
Source Book. 4th. Sperelakis N: Academic Press; San Diego, CA: pp.
67–83. 2012
|
4
|
Ding L, Lu Z, Lu Q and Chen YH: The
claudin family of proteins in human malignancy: a clinical
perspective. Cancer Manag Res. 5:367–375. 2013.PubMed/NCBI
|
5
|
Findley MK and Koval M: Regulation and
roles for claudin family tight junction proteins. IUBMB Life.
61:431–437. 2009. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Günzel D and Yu ASL: Claudins and the
modulation of tight junction permeability. Physiol Rev. 93:525–569.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Turksen K and Troy TC: Junctions gone bad:
claudins and loss of the barrier in cancer. Biochim Biophys Acta.
1816:73–79. 2011.PubMed/NCBI
|
8
|
Valle BL and Morin PJ: Claudins in Cancer
Biology. Current Topics in Membranes. Yu ASL: 65. Academic Press;
Amsterdam: pp. 293–333. 2010
|
9
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Frixen UH, Behrens J, Sachs M, et al:
E-cadherin-mediated cell-cell adhesion prevents invasiveness of
human carcinoma cells. J Cell Biol. 113:173–185. 1991. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hirohashi S and Kanai Y: Cell adhesion
system and human cancer morphogenesis. Cancer Sci. 94:575–581.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Skrzypczak M, Goryca K, Rubel T, et al:
Modeling oncogenic signaling in colon tumors by multidirectional
analyses of microarray data directed for maximization of analytical
reliability. PLoS One. 5:e130912010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mikula M, Rubel T, Karczmarski J, Goryca
K, Dadlez M and Ostrowski J: Integrating proteomic and
transcriptomic high-throughput surveys for search of new biomarkers
of colon tumors. Funct Integr Genomics. 11:215–224. 2011.
View Article : Google Scholar
|
14
|
Flanagin S, Nelson JD, Castner DG,
Denisenko O and Bomsztyk K: Microplate-based chromatin
immunoprecipitation method, Matrix ChIP: a platform to study
signaling of complex genomic events. Nucleic Acids Res. 36:e172008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yu J, Feng Q, Ruan Y, Komers R, Kiviat N
and Bomsztyk K: Microplate-based platform for combined chromatin
and DNA methylation immunoprecipitation assays. BMC Mol Biol.
12:492011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mikula M, Bomsztyk K, Goryca K, Chojnowski
K and Ostrowski J: Heterogeneous nuclear ribonucleoprotein (HnRNP)
K genome-wide binding survey reveals its role in regulating 3′-end
RNA processing and transcription termination at the early growth
response 1 (EGR1) gene through XRN2 exonuclease. J Biol Chem.
288:24788–24798. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Aird D, Ross MG, Chen W-S, et al:
Analyzing and minimizing PCR amplification bias in Illumina
sequencing libraries. Genome Biol. 12:R182011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Langmead B, Trapnell C, Pop M and Salzberg
SL: Ultrafast and memory-efficient alignment of short DNA sequences
to the human genome. Genome Biol. 10:R252009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Liu T, Meyer CA, et al:
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9:R1372008.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kent WJ, Sugnet CW, Furey TS, et al: The
human genome browser at UCSC. Genome Res. 12:996–1006. 2002.doi:
10.1101/gr.229102.Article published online before print in May
2002. PubMed/NCBI
|
21
|
ENCODE Project Consortium: An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
McCabe MT, Ott HM, Ganji G, et al: EZH2
inhibition as a therapeutic strategy for lymphoma with
EZH2-activating mutations. Nature. 492:108–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mikula M, Gaj P, Dzwonek K, et al:
Comprehensive analysis of the palindromic motif TCTCGCGAGA: a
regulatory element of the HNRNPK promoter. DNA Res. 17:245–260.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Singh AB, Sharma A and Dhawan P: Claudin
family of proteins and cancer: an overview. J Oncol. 2010:2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chi P, Allis CD and Wang GG: Covalent
histone modifications - miswritten, misinterpreted and mis-erased
in human cancers. Nat Rev Cancer. 10:457–469. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bernstein BE, Mikkelsen TS, Xie X, et al:
A bivalent chromatin structure marks key developmental genes in
embryonic stem cells. Cell. 125:315–326. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Larson JL and Yuan GC: Chromatin states
accurately classify cell differentiation stages. PLoS One.
7:e314142012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rodriguez J, Muñoz M, Vives L, Frangou CG,
Groudine M and Peinado MA: Bivalent domains enforce transcriptional
memory of DNA methylated genes in cancer cells. Proc Natl Acad Sci
USA. 105:19809–19814. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Voigt P, Tee WW and Reinberg D: A double
take on bivalent promoters. Genes Dev. 27:1318–1338. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Mikkelsen TS, Ku M, Jaffe DB, et al:
Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature. 448:553–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ku M, Koche RP, Rheinbay E, et al:
Genomewide analysis of PRC1 and PRC2 occupancy identifies two
classes of bivalent domains. PLoS Genet. 4:e10002422008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Brookes E, de Santiago I, Hebenstreit D,
et al: Polycomb associates genome-wide with a specific RNA
polymerase II variant, and regulates metabolic genes in ESCs. Cell
Stem Cell. 10:157–170. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kwon MJ, Kim SH, Jeong HM, et al:
Claudin-4 overexpression is associated with epigenetic derepression
in gastric carcinoma. Lab Invest. 91:1652–1667. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kwon MJ, Kim SS, Choi YL, et al:
Derepression of CLDN3 and CLDN4 during ovarian tumorigenesis is
associated with loss of repressive histone modifications.
Carcinogenesis. 31:974–983. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Katoh M and Katoh M: CLDN23 gene,
frequently down-regulated in intestinal-type gastric cancer, is a
novel member of CLAUDIN gene family. Int J Mol Med. 11:683–689.
2003.PubMed/NCBI
|
36
|
Pitule P, Vycital O, Bruha J, et al:
Differential expression and prognostic role of selected genes in
colorectal cancer patients. Anticancer Res. 33:4855–4865.
2013.PubMed/NCBI
|