1
|
Jarvis WR and Martone WJ: Predominant
pathogens in hospital infections. J Antimicrob Chemother. 29:19–24.
1992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Carpenter JL: Klebsiella pulmonary
infections: occurrence at one medical center and review. Rev Infect
Dis. 12:672–682. 1990. View Article : Google Scholar : PubMed/NCBI
|
3
|
Podschun R and Ullmann U: Klebsiella spp.
as Nosocomial pathogens: Epidemiology, taxonomy, typing methods,
and pathogenicity factors. Clin Microbiol Rev. 11:589–603.
1998.PubMed/NCBI
|
4
|
Song JM, Bishop BL, Li GJ, Duncan MJ and
Abraham SN: TLR4 initiated and cAMP mediated abrogation of
bacterial invasion of the bladder. Cell Host Microbe. 1:287–298.
2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gruenheid S and Finlay BB: Microbial
pathogenesis and cytoskeletal function. Nature. 422:775–81. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Winder SJ and Ayscough KR: Actin-binding
proteins. J Cell Sci. 118:651–654. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsai KW, Lai HT, Tsai TC, et al:
Difference in the regulation of IL-8 expression induced by
uropathogenic E. coli between two kinds of urinary tract epithelial
cells. J Biomed Sci. 16:912009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bhavsar AP, Guttman JA and Finlay BB:
Manipulation of host-cell pathways by bacterial pathogens. Nature.
449:827–834. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Haglund CM and Welch MD: Pathogens and
polymers: microbe-host interactions illuminate the cytoskeleton. J
Cell Biol. 195:7–17. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ye P, Garvey PB, Zhang P, et al:
Interleukin-17 and lung host defense against Klebsiella pneumoniae
infection. Am J Respir Cell Mol Biol. 25:335–340. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Borish LC and Steinke JW: Cytokines and
chemokines. J Allergy Clin Immunol. 111(2 Suppl): S460–S475. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sutherland RE, Olsen JS, McKinstry A, et
al: Mast cell IL-6 improves survival from Klebsiella pneumonia and
sepsis by enhancing neutrophil killing. J Immunol. 181:5598–5605.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tsai WC, Strieter RM, Wilkowski JM,
Bucknell KA, Burdick MD, Lira SA and Standiford TJ: Lung-specific
transgenic expression of KC enhances resistance to Klebsiella
pneumoniae in mice. J Immunol. 161:2435–2440. 1998.PubMed/NCBI
|
14
|
Cai S, Batra S, Lira SA, Kolls JK and
Jeyaseelan S: CXCL1 regulates pulmonary host defense to Klebsiella
infection via CXCL2, CXCL5, NF-kappaB, and MAPKs. J Immunol.
185:6214–6225. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Goetz DH, Holmes MA, Borregaard N, et al:
The neutrophil lipocalin NGAL is a bacteriostatic agent that
interferes with siderophore-mediated iron acquisition. Mol Cell.
10:1033–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Flo TH, Smith KD, Sato S, et al:
Lipocalin2 mediates an innate immune response to bacterial
infection by sequestrating iron. Nature. 432:917–921. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ganz T: Defensins: antimicrobial peptides
of innate immunity. Nat Rev Immunol. 3:710–720. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shirakawa H, Herrera JE, Bustin M and
Postnikov Y: Targeting of high mobility group-14/-17 proteins in
chromatin is independent of DNA sequence. J Biol Chem.
275:37937–37944. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Subramanian M, Gonzalez RW, Patil H, et
al: The nucleosome-binding protein HMGN2 modulates global genome
repair. FEBS J. 276:6646–6657. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Feng Y, Huang N, Wu Q and Wang B: HMGN2: a
novel antimicrobial effector molecule of human mononuclear
leukocytes? J Leukocyte Biol. 78:1136–1141. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng Y, Huang N, Wu Q, Bao L and Wang BY:
α-helical domain is essential for antimicrobial activity of high
mobility group nucleosomal binding domain 2 (HMGN2). Acta Pharmacol
Sin. 26:1087–1092. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng Y, He F, Zhang P, et al: Inhibitory
effect of HMGN2 protein on human hepatitis B virus expression and
replication in the HepG2.2.15 cell line. Antiviral Res. 81:277–282.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xiong WB, Hung N, Feng Y, Wu Q and Wang
BY: Creation and anti-cancer potency in HeLa cells of a novel
chimeric toxin, HMGNCIDIN, composed of HMGN2 α-helical domain and
PE38 KDEL domain III. Chin Med J (Engl). 121:82–85. 2008.
|
24
|
Wu G, Cao Y, Fan B, et al: High-mobility
group protein N2 (HMGN2) inhibited the internalization of
Klebsiella pneumoniae into cultured bladder epithelial cells. Acta
Biochim Biophys Sin (Shanghai). 43:680–687. 2011. View Article : Google Scholar
|
25
|
Cao Y, Wu GX, Fan B, et al: High mobility
group nucleosomal binding domain 2 protein protects bladder
epithelial cells from Klebsiella pneumoniae invasion. Biol Pharm
Bull. 34:1065–1071. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Andersson U, Wang H, Palmblad K, et al:
High mobility group 1 protein (HMG-1) stimulates proinflammatory
cytokine synthesis in human monocytes. J Exp Med. 192:565–570.
2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ulloa L, Batliwalla FM, Andersson U, et
al: High mobility group box chromosomal protein 1 as a nuclear
protein, cytokine, and potential therapeutic target in arthritis.
Arthritis Rheum. 48:876–881. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pisetsky DS, Erlandsson-Harris H and
Andersson U: High-mobility group box protein 1 (HMGB1): an alarmin
mediating the pathogenesis of rheumatic disease. Arthritis Res
Ther. 10:2092008. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Yang D, Postnikov YV, Li Y, et al:
High-mobility group nucleosome-binding protein 1 acts as an alarmin
and is critical for lipopolysaccharideinduced immune responses. J
Exp Med. 209:157–171. 2012. View Article : Google Scholar :
|
30
|
Mills B, Arrington JB and Sobin LH:
Laboratory methods in histotechnology. Washington, DC: American
registry of pathology; pp. 132–214. 1992
|
31
|
Deng LX, Wu GX, Cao Y, et al: The
chromosomal protein HMGN2 mediates the LPS-induced expression of
β-defensins in mice. Inflammation. 35:456–473. 2012. View Article : Google Scholar
|
32
|
Li QQ, Chen ZQ, Cao XX, et al: Involvement
of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced
epithelial-mesenchymal transition of breast cancer cells. Cell
Death Differ. 18:16–25. 2011. View Article : Google Scholar :
|
33
|
Nohara A, Okada S, Ohshima K, et al:
Cyclin-dependent kinase-5 is a key molecule in tumor necrosis
factor-α-induced insulin resistance. J Biol Chem. 286:33457–33465.
2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lafont F and van der Goot FG: Bacterial
invasion via lipid rafts. Cell Microbiol. 7:613–620. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kihlström E and Andåker L: Inability of
gentamicin and fosfomycin to eliminate intracellular
Enterobacteriaceae. J Antimicrob Chemother. 15:723–728. 1985.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Snelgrove R, Gwyer E and Hussell T:
Modulation of immunity to respiratory viral infection. Future
Virol. 1:471–481. 2006. View Article : Google Scholar
|