1
|
Shepard CW, Finelli L and Alter MJ: Global
epidemiology of hepatitis C virus infection. Lancet Infect Dis.
5:558–567. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Seeff LB, Hollinger FB, Alter HJ, Wright
EC, Cain CM, Buskell ZJ, Ishak KG, Iber FL, Toro D, Samanta A, et
al: Long-term mortality and morbidity of transfusion-associated
non-A, non-B, and type C hepatitis: A National Heart, Lung, and
Blood Institute collaborative study. Hepatology. 33:455–463. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Guo QM: DNA microarray and cancer. Curr
Opin Oncol. 15:36–43. 2003. View Article : Google Scholar
|
4
|
Ding C and Cantor CR: Quantitative
analysis of nucleic acids - the last few years of progress. J
Biochem Mol Biol. 37:1–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xiong J, Lu Y, Feng J, Yuan D, Tian M,
Chang Y, Fu C, Wang G, Zeng H and Miao W: Tetrahymena functional
genomics database (TetraFGD): An integrated resource for
Tetrahymena functional genomics. Database (Oxford).
2013:bat0082013. View Article : Google Scholar
|
6
|
Wang Y, Joshi T, Zhang XS, Xu D and Chen
L: Inferring gene regulatory networks from multiple microarray
datasets. Bioinformatics. 22:2413–2420. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID Gene Functional Classification Tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for Annotation,
Visualization, and Integrated Discovery. Genome Biol. 4:32003.
View Article : Google Scholar
|
9
|
Haeseleer F, Sokal I, Li N, Pettenati M,
Rao N, Bronson D, Wechter R, Baehr W and Palczewski K: Molecular
characterization of a third member of the guanylyl
cyclase-activating protein subfamily. J Biol Chem. 274:6526–6535.
1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gustafsson M, Hornquist M and Lombardi A:
Constructing and analyzing a large-scale gene-to-gene regulatory
network - lasso-constrained inference and biological validation.
IEEE/ACM Trans Comput Biol Bioinform. 2:254–261. 2005. View Article : Google Scholar
|
11
|
Wang L, Huang J, Jiang M and Sun L: MYBPC1
computational phosphoprotein network construction and analysis
between frontal cortex of HIV encephalitis (HIVE) and HIVE-control
patients. Cell Mol Neurobiol. 31:233–241. 2011. View Article : Google Scholar
|
12
|
Wang L, Sun L, Huang J and Jiang M:
Cyclin-dependent kinase inhibitor 3 (CDKN3) novel cell cycle
computational network between human non-malignancy associated
hepatitis/cirrhosis and hepatocellular carcinoma (HCC)
transformation. Cell Prolif. 44:291–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Thompson MR, Xu D and Williams BR: ATF3
transcription factor and its emerging roles in immunity and cancer.
J Mol Med (Berl). 87:1053–1060. 2009. View Article : Google Scholar
|
14
|
Hai T, Wolfgang CD, Marsee DK, Allen AE
and Sivaprasad U: ATF3 and stress responses. Gene Expr. 7:321–335.
1999.PubMed/NCBI
|
15
|
Cai Y, Zhang C, Nawa T, Aso T, Tanaka M,
Oshiro S, Ichijo H and Kitajima S: Homocysteine-responsive ATF3
gene expression in human vascular endothelial cells: Activation of
c-Jun NH(2)-terminal kinase and promoter response element. Blood.
96:2140–2148. 2000.PubMed/NCBI
|
16
|
Kawai T and Akira S: TLR signaling. Cell
Death Differ. 13:816–825. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gilchrist M, Henderson WR Jr, Clark AE,
Simmons RM, Ye X, Smith KD and Aderem A: Activating transcription
factor 3 is a negative regulator of allergic pulmonary
inflammation. J Exp Med. 205:2349–2357. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Swann JB, Vesely MD, Silva A, Sharkey J,
Akira S, Schreiber RD and Smyth MJ: Demonstration of
inflammation-induced cancer and cancer immunoediting during primary
tumorigenesis. Proc Natl Acad Sci USA. 105:652–656. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rakoff-Nahoum S and Medzhitov R:
Regulation of spontaneous intestinal tumorigenesis through the
adaptor protein MyD88. Science. 317:124–127. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leitner WW, Hwang LN, deVeer MJ, Zhou A,
Silverman RH, Williams BR, Dubensky TW, Ying H and Restifo NP:
Alphavirus-based DNA vaccine breaks immunological tolerance by
activating innate antiviral pathways. Nat Med. 9:33–39. 2003.
View Article : Google Scholar
|
21
|
Scheule RK: The role of CpG motifs in
immunostimulation and gene therapy. Adv Drug Deliv Rev. 44:119–134.
2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Whitmore MM, DeVeer MJ, Edling A, Oates
RK, Simons B, Lindner D and Williams BR: Synergistic activation of
innate immunity by double-stranded RNA and CpG DNA promotes
enhanced antitumor activity. Cancer Res. 64:5850–5860. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Litvak V, Ramsey SA, Rust AG, Zak DE,
Kennedy KA, Lampano AE, Nykter M, Shmulevich I and Aderem A:
Function of C/EBPdelta in a regulatory circuit that discriminates
between transient and persistent TLR4-induced signals. Nat Immunol.
10:437–443. 2009. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Xie J and Roberson MS: 3′, 5′-cyclic
adenosine 5′-mono-phosphate response element-dependent
transcriptional regulation of the secretogranin II gene promoter
depends on gonadotropin-releasing hormone-induced mitogen-activated
protein kinase activation and the transactivator activating
transcription factor 3. Endocrinology. 149:783–792. 2008.
View Article : Google Scholar
|
25
|
Salisbury TB, Binder AK, Grammer JC and
Nilson JH: GnRH-regulated expression of Jun and JUN target genes in
gonadotropes requires a functional interaction between TCF/LEF
family members and beta-catenin. Mol Endocrinol. 23:402–411. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mayer SI, Dexheimer V, Nishida E, Kitajima
S and Thiel G: Expression of the transcriptional repressor ATF3 in
gonadotrophs is regulated by Egr-1, CREB, and ATF2 after
gonadotropin-releasing hormone receptor stimulation. Endocrinology.
149:6311–6325. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pelzer AE, Bektic J, Haag P, Berger AP,
Pycha A, Schäfer G, Rogatsch H, Horninger W, Bartsch G and Klocker
H: The expression of transcription factor activating transcription
factor 3 in the human prostate and its regulation by androgen in
prostate cancer. J Urol. 175:1517–1522. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu X, Nguyen BC, Dziunycz P, Chang S,
Brooks Y, Lefort K, Hofbauer GF and Dotto GP: Opposing roles for
calcineurin and ATF3 in squamous skin cancer. Nature. 465:368–372.
2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yin X, Dewille JW and Hai T: A potential
dichotomous role of ATF3, an adaptive-response gene, in cancer
development. Oncogene. 27:2118–2127. 2008. View Article : Google Scholar
|
30
|
Kawai M, Jin M, Nishimura J, Dewa Y,
Saegusa Y, Matsumoto S, Taniai E, Shibutani M and Mitsumori K:
Hepatocarcinogenic susceptibility of fenofibrate and its possible
mechanism of carcinogenicity in a two-stage hepatocarcinogenesis
model of rasH2 mice. Toxicol Pathol. 36:950–957. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xie JJ, Xu LY, Xie YM, Zhang HH, Cai WJ,
Zhou F, Shen ZY and Li EM: Roles of ezrin in the growth and
invasiveness of esophageal squamous carcinoma cells. Int J Cancer.
124:2549–2558. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hamdi M, Popeijus HE, Carlotti F, Janssen
JM, van der Burgt C, Cornelissen-Steijger P, van de Water B, Hoeben
RC, Matsuo K and van Dam H: ATF3 and Fra1 have opposite functions
in JNK- and ERK-dependent DNA damage responses. DNA Repair (Amst).
7:487–496. 2008. View Article : Google Scholar
|
33
|
Huang X, Li X and Guo B: KLF6 induces
apoptosis in prostate cancer cells through up-regulation of ATF3. J
Biol Chem. 283:29795–29801. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rosenberger CM, Clark AE, Treuting PM,
Johnson CD and Aderem A: ATF3 regulates MCMV infection in mice by
modulating IFN-gamma expression in natural killer cells. Proc Natl
Acad Sci USA. 105:2544–2549. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang H, Mo P, Ren S and Yan C: Activating
transcription factor 3 activates p53 by preventing E6-associated
protein from binding to E6. J Biol Chem. 285:13201–13210. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Tian Z, An N, Zhou B, Xiao P, Kohane IS
and Wu E: Cytotoxic diarylheptanoid induces cell cycle arrest and
apoptosis via increasing ATF3 and stabilizing p53 in SH-SY5Y cells.
Cancer Chemother Pharmacol. 63:1131–1139. 2009. View Article : Google Scholar
|
37
|
Kashiwakura Y, Ochiai K, Watanabe M,
Abarzua F, Sakaguchi M, Takaoka M, Tanimoto R, Nasu Y, Huh NH and
Kumon H: Down-regulation of inhibition of differentiation-1 via
activation of activating transcription factor 3 and Smad regulates
REIC/Dickkopf-3-induced apoptosis. Cancer Res. 68:8333–8341. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gilchrist M, Thorsson V, Li B, Rust AG,
Korb M, Roach JC, Kennedy K, Hai T, Bolouri H and Aderem A: Systems
biology approaches identify ATF3 as a negative regulator of
Toll-like receptor 4. Nature. 441:173–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Whitmore MM, Iparraguirre A, Kubelka L,
Weninger W, Hai T and Williams BR: Negative regulation of
TLR-signaling pathways by activating transcription factor-3. J
Immunol. 179:3622–3630. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gilchrist M, Henderson WR Jr, Morotti A,
Johnson CD, Nachman A, Schmitz F, Smith KD and Aderem A: A key role
for ATF3 in regulating mast cell survival and mediator release.
Blood. 115:4734–4741. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shukla A, MacPherson MB, Hillegass J,
Ramos-Nino ME, Alexeeva V, Vacek PM, Bond JP, Pass HI, Steele C and
Mossman BT: Alterations in gene expression in human mesothelial
cells correlate with mineral pathogenicity. Am J Respir Cell Mol
Biol. 41:114–123. 2009. View Article : Google Scholar :
|
42
|
Khuu CH, Barrozo RM, Hai T and Weinstein
SL: Activating transcription factor 3 (ATF3) represses the
expression of CCL4 in murine macrophages. Mol Immunol.
44:1598–1605. 2007. View Article : Google Scholar
|
43
|
Herzig S, Long F, Jhala US, Hedrick S,
Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, et al:
CREB regulates hepatic gluconeogenesis through the coactivator
PGC-1. Nature. 413:179–183. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lonardo A, Adinolfi LE, Loria P, Carulli
N, Ruggiero G, et al: Steatosis and hepatitis C virus: mechanisms
and significance for hepatic and extrahepatic disease.
Gastroenterology. 126:586–597. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Koike K: Hepatitis C as a metabolic
disease: Implication for the pathogenesis of NASH. Hepatol Res.
33:145–150. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kawaguchi Y and Mizuta T: Interaction
between hepatitis C virus and metabolic factors. World J
Gastroenterol. 20:2888–2901. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Syed GH, Amako Y and Siddiqui A: Hepatitis
C virus hijacks host lipid metabolism. Trends Endocrinol Metab.
21:33–40. 2010. View Article : Google Scholar :
|
48
|
Rynes J, Donohoe CD, Frommolt P, Brodesser
S, Jindra M and Uhlirova M: Activating transcription factor 3
regulates immune and metabolic homeostasis. Mol Cell Biol.
32:3949–3962. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kim J, Di Vizio D, Kim TK, Kim J, Kim M,
Pelton K, Clinton SK, Hai T, Hwang D, Solomon KR, et al: The
response of the prostate to circulating cholesterol: Activating
transcription factor 3 (ATF3) as a prominent node in a
cholesterol-sensing network. PLoS One. 7:e394482012. View Article : Google Scholar : PubMed/NCBI
|