1
|
Beatty S, Koh H, Phil M, Henson D and
Boulton M: The role of oxidative stress in the pathogenesis of
age-related macular degeneration. Surv Ophthalmol. 45:115–134.
2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Congdon NG, Friedman DS and Lietman T:
Important causes of visual impairment in the world today. JAMA.
290:2057–2060. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khan JC, Thurlby DA, Shahid H, et al:
Smoking and age related macular degeneration: the number of pack
years of cigarette smoking is a major determinant of risk for both
geographic atrophy and choroidal neovascularisation. Br J
Ophthalmol. 90:75–80. 2006. View Article : Google Scholar
|
4
|
Smith CJ and Hansch C: The relative
toxicity of compounds in mainstream cigarette smoke condensate.
Food Chem Toxicol. 38:637–646. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Age-Related Eye Disease Study Research
Group: A randomized, placebo-controlled, clinical trial of
high-dose supplementation with vitamins C and E and beta carotene
for age-related cataract and vision loss: AREDS report no. 9. Arch
Ophthalmol. 119:1439–1452. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Crabb JW, Miyagi M, Gu X, et al: Drusen
proteome analysis: an approach to the etiology of age-related
macular degeneration. Proc Natl Acad Sci USA. 99:14682–14687. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Jarrett SG and Boulton ME: Consequences of
oxidative stress in age-related macular degeneration. Mol Aspects
Med. 33:399–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Plafker SM, O’Mealey GB and Szweda LI:
Mechanisms for countering oxidative stress and damage in retinal
pigment epithelium. Int Rev Cell Mol Biol. 298:135–177.
2012.PubMed/NCBI
|
9
|
Wang ZY, Shen LJ, Tu L, et al:
Erythropoietin protects retinal pigment epithelial cells from
oxidative damage. Free Radic Biol Med. 46:1032–1041. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cai J, Nelson KC, Wu M, Sternberg P Jr and
Jones DP: Oxidative damage and protection of the RPE. Prog Retin
Eye Res. 19:205–221. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Z, Dong X, Liu H, et al: Astaxanthin
protects ARPE-19 cells from oxidative stress via upregulation of
Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol
Vis. 19:1656–1666. 2013.PubMed/NCBI
|
12
|
Kook D, Wolf AH, Yu AL, et al: The
protective effect of quercetin against oxidative stress in the
human RPE in vitro. Invest Ophthalmol Vis Sci. 49:1712–1720. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Horio Y, Hayashi T, Kuno A and Kunimoto R:
Cellular and molecular effects of sirtuins in health and disease.
Clin Sci (Lond). 121:191–203. 2011. View Article : Google Scholar
|
14
|
Raynes R, Brunquell J and Westerheide SD:
Stress inducibility of SIRT1 and its role in cytoprotection and
cancer. Genes Cancer. 4:172–182. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Alcendor RR, Gao S, Zhai P, et al: Sirt1
regulates aging and resistance to oxidative stress in the heart.
Circ Res. 100:1512–1521. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kawai Y, Garduno L, Theodore M, Yang J and
Arinze IJ: Acetylation-deacetylation of the transcription factor
Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its
transcriptional activity and nucleocytoplasmic localization. J Biol
Chem. 286:7629–7640. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Levy DE and Lee CK: What does Stat3 do? J
Clin Invest. 109:1143–1148. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bourgeais J, Gouilleux-Gruart V and
Gouilleux F: Oxidative metabolism in cancer: A STAT affair?
JAKSTAT. 2:e257642013.
|
19
|
Zouein FA, Kurdi M and Booz GW: Dancing
rhinos in stilettos: The amazing saga of the genomic and nongenomic
actions of STAT3 in the heart. JAKSTAT. 2:e243522013.PubMed/NCBI
|
20
|
Nie Y, Erion DM, Yuan Z, et al: STAT3
inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell
Biol. 11:492–500. 2009. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Bernier M, Paul RK, Martin-Montalvo A, et
al: Negative regulation of STAT3 protein-mediated cellular
respiration by SIRT1 protein. J Biol Chem. 286:19270–19279. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Polidoro L, Properzi G, Marampon F, et al:
Vitamin D protects human endothelial cells from
H2O2 oxidant injury through the Mek/Erk-Sirt1
axis activation. J Cardiovasc Transl Res. 6:221–231. 2013.
View Article : Google Scholar
|
23
|
Li Y, Liu X, Zhou T, et al: Inhibition of
APE1/Ref-1 redox activity rescues human retinal pigment epithelial
cells from oxidative stress and reduces choroidal
neovascularization. Redox Biol. 2:485–494. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hori YS, Kuno A, Hosoda R and Horio Y:
Regulation of FOXOs and p53 by SIRT1 modulators under oxidative
stress. PLoS One. 8:e738752013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kozlowski MR: RPE cell senescence: a key
contributor to age-related macular degeneration. Med Hypotheses.
78:505–510. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hanus J, Zhang H, Wang Z, Liu Q, Zhou Q
and Wang S: Induction of necrotic cell death by oxidative stress in
retinal pigment epithelial cells. Cell Death Dis. 4:e9652013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamada Y, Tian J, Yang Y, et al: Oxidized
low density lipoproteins induce a pathologic response by retinal
pigmented epithelial cells. J Neurochem. 105:1187–1197. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Patel AK and Hackam AS: Toll-like receptor
3 (TLR3) protects retinal pigmented epithelium (RPE) cells from
oxidative stress through a STAT3-dependent mechanism. Mol Immunol.
54:122–131. 2013. View Article : Google Scholar :
|
29
|
Geiger RC, Waters CM, Kamp DW and
Glucksberg MR: KGF prevents oxygen-mediated damage in ARPE-19
cells. Invest Ophthalmol Vis Sci. 46:3435–3442. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tanno M, Kuno A, Yano T, et al: Induction
of manganese superoxide dismutase by nuclear translocation and
activation of SIRT1 promotes cell survival in chronic heart
failure. J Biol Chem. 285:8375–8382. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kops GJ, Dansen TB, Polderman PE, et al:
Forkhead transcription factor FOXO3a protects quiescent cells from
oxidative stress. Nature. 419:316–321. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vinciguerra M, Santini MP, Martinez C, et
al: mIGF-1/JNK1/SirT1 signaling confers protection against
oxidative stress in the heart. Aging Cell. 11:139–149. 2012.
View Article : Google Scholar
|
33
|
Caito S, Rajendrasozhan S, Cook S, et al:
SIRT1 is a redox-sensitive deacetylase that is post-translationally
modified by oxidants and carbonyl stress. FASEB J. 24:3145–3159.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Arunachalam G, Yao H, Sundar IK, Caito S
and Rahman I: SIRT1 regulates oxidant- and cigarette smoke-induced
eNOS acetylation in endothelial cells: Role of resveratrol. Biochem
Biophys Res Commun. 393:66–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang SR, Wright J, Bauter M, Seweryniak K,
Kode A and Rahman I: Sirtuin regulates cigarette smoke-induced
proinflammatory mediator release via RelA/p65 NF-kappaB in
macrophages in vitro and in rat lungs in vivo: implications for
chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol.
292:L567–L576. 2007. View Article : Google Scholar
|
36
|
Fasler-Kan E, Wunderlich K, Hildebrand P,
Flammer J and Meyer P: Activated STAT3 in choroidal neovascular
membranes of patients with age-related macular degeneration.
Ophthalmologica. 219:214–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang C, Li H, Liu MG, et al: STAT3
activation protects retinal ganglion cell layer neurons in response
to stress. Exp Eye Res. 86:991–997. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mimura T, Kaji Y, Noma H, Funatsu H and
Okamoto S: The role of SIRT1 in ocular aging. Exp Eye Res.
116:17–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cao L, Liu C, Wang F and Wang H: SIRT1
negatively regulates amyloid-beta-induced inflammation via the
NF-κB pathway. Braz J Med Biol Res. 46:659–669. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chou WW, Chen KC, Wang YS, Wang JY, Liang
CL and Juo SH: The role of SIRT1/AKT/ERK pathway in ultraviolet B
induced damage on human retinal pigment epithelial cells. Toxicol
In Vitro. 27:1728–1736. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Scuto A, Kirschbaum M, Buettner R, et al:
SIRT1 activation enhances HDAC inhibition-mediated upregulation of
GADD45G by repressing the binding of NF-κB/STAT3 complex to its
promoter in malignant lymphoid cells. Cell Death Dis. 4:e6352013.
View Article : Google Scholar
|
42
|
Borden EC, Sen GC, Uze G, et al:
Interferons at age 50: past, current and future impact on
biomedicine. Nat Rev Drug Discov. 6:975–990. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yuan ZL, Guan YJ, Chatterjee D and Chin
YE: Stat3 dimerization regulated by reversible acetylation of a
single lysine residue. Science. 307:269–273. 2005. View Article : Google Scholar : PubMed/NCBI
|