1
|
Kirino T and Sano K: Selective
vulnerability in the gerbil hippocampus following transient
ischemia. Acta Neuropathol. 62:201–208. 1984. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kirino T: Delayed neuronal death in the
gerbil hippocampus following ischemia. Brain Res. 239:57–69. 1982.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang ZH, Wu LN, Song JG and Li WQ:
Correlations between cognitive impairment and brain-derived
neurotrophic factor expression in the hippocampus of post-stroke
depression rats. Mol Med Rep. 6:889–893. 2012.PubMed/NCBI
|
4
|
Ding DX, Tian FF, Guo JL, et al: Dynamic
expression patterns of ATF3 and p53 in the hippocampus of a
pentylenetetrazole-induced kindling model. Mol Med Rep. 10:645–651.
2014.PubMed/NCBI
|
5
|
Chen L, Lv Y, Cui Z, et al: Tetrandrine
ameliorates cognitive impairment via inhibiting astrocyte-derived
S100B activation in a rat model of chronic cerebral hypoperfusion.
Neurol Res. 35:614–621. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rastogi L, Godbole MM, Ray M, et al:
Reduction in oxidative stress and cell death explains
hypothyroidism induced neuroprotection subsequent to
ischemia/reperfusion insult. Exp Neurol. 200:290–300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee CH, Park JH, Yoo KY, et al: Pre- and
post-treatments with escitalopram protect against experimental
ischemic neuronal damage via regulation of BDNF expression and
oxidative stress. Exp Neurol. 229:450–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chan PH: Mitochondria and neuronal
death/survival signaling pathways in cerebral ischemia. Neurochem
Res. 29:1943–1949. 2004. View Article : Google Scholar
|
9
|
Yamagata K, Tagami M, Ikeda K, Yamori Y
and Nara Y: Altered gene expressions during hypoxia and
reoxygenation in cortical neurons isolated from stroke-prone
spontaneously hypertensive rats. Neurosci Lett. 284:131–134. 2000.
View Article : Google Scholar : PubMed/NCBI
|
10
|
White BC, Sullivan JM, DeGracia DJ, et al:
Brain ischemia and reperfusion: molecular mechanisms of neuronal
injury. J Neurol Sci. 179:1–33. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Starkov AA, Chinopoulos C and Fiskum G:
Mitochondrial calcium and oxidative stress as mediators of ischemic
brain injury. Cell Calcium. 36:257–264. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang H, Go YM and Jones DP: Mitochondrial
thioredoxin-2/peroxiredoxin-3 system functions in parallel with
mitochondrial GSH system in protection against oxidative stress.
Arch Biochem Biophys. 465:119–126. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nordberg J and Arner ES: Reactive oxygen
species, antioxidants and the mammalian thioredoxin system. Free
Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Drechsel DA and Patel M:
Respiration-dependent H2O2 removal in brain
mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem.
285:27850–27858. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Das KC: Thioredoxin and its role in
premature newborn biology. Antioxid Redox Signal. 7:1740–1743.
2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Watabe S, Hiroi T, Yamamoto Y, et al:
SP-22 is a thioredoxin-dependent peroxide reductase in
mitochondria. Eur J Biochem. 249:52–60. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Powis G and Montfort WR: Properties and
biological activities of thioredoxins. Annu Rev Biophys Biomol
Struct. 30:421–455. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et
al: Thioredoxin-2 (TRX-2) is an essential gene regulating
mitochondria-dependent apoptosis. EMBO J. 21:1695–1703. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rhee SG, Kang SW, Chang TS, Jeong W and
Kim K: Peroxiredoxin, a novel family of peroxidases. IUBMB Life.
52:35–41. 2001. View Article : Google Scholar
|
20
|
Damdimopoulos AE, Miranda-Vizuete A,
Pelto-Huikko M, Gustafsson JA and Spyrou G: Human mitochondrial
thioredoxin. Involvement in mitochondrial membrane potential and
cell death. J Biol Chem. 277:33249–33257. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Krapfenbauer K, Engidawork E, Cairns N,
Fountoulakis M and Lubec G: Aberrant expression of peroxiredoxin
subtypes in neurodegenerative disorders. Brain Res. 967:152–160.
2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hwang IK, Yoo KY, Kim DW, et al: Changes
in the expression of mitochondrial peroxiredoxin and thioredoxin in
neurons and glia and their protective effects in experimental
cerebral ischemic damage. Free Radic Biol Med. 48:1242–1251. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hattori I, Takagi Y, Nakamura H, et al:
Intravenous administration of thioredoxin decreases brain damage
following transient focal cerebral ischemia in mice. Antioxid Redox
Signal. 6:81–87. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hattori F, Murayama N, Noshita T and
Oikawa S: Mitochondrial peroxiredoxin-3 protects hippocampal
neurons from excitotoxic injury in vivo. J Neurochem. 86:860–868.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yan BC, Park JH, Ahn JH, et al: Comparison
of the immunoreactivity of Trx2/Prx3 redox system in the
hippocampal CA1 region between the young and adult gerbil induced
by transient cerebral ischemia. Neurochem Res. 37:1019–1030. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yu DK, Yoo KY, Shin BN, et al: Neuronal
damage in hippocampal subregions induced by various durations of
transient cerebral ischemia in gerbils using Fluoro-Jade B
histofluorescence. Brain Res. 1437:50–57. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee CH, Yoo KY, Choi JH, et al: Neuronal
damage is much delayed and microgliosis is more severe in the aged
hippocampus induced by transient cerebral ischemia compared to the
adult hippocampus. J Neurol Sci. 294:1–6. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee CH, Yoo KY, Choi JH, et al: Comparison
of phosphorylated extracellular signal-regulated kinase 1/2
immunoreactivity in the hippocampal Ca1 region induced by transient
cerebral ischemia between adult and aged gerbils. Cell Mol
Neurobiol. 31:449–457. 2011. View Article : Google Scholar
|
29
|
Institute of Laboratory Animal Research,
Committee for the Update of the Guide for the Care and Use of
Laboratory Animals, National Research Council: Guide for the care
and use of laboratory animals. 8th. Washington, (DC): National
Academies Press; pp. 2202011
|
30
|
Xu K, Puchowicz MA, Sun X and LaManna JC:
Mitochondrial dysfunction in aging rat brain following transient
global ischemia. Adv Exp Med Biol. 614:379–386. 2008.PubMed/NCBI
|
31
|
Tamagaki C, Murata A, Asai S, et al:
Age-related changes of cornu ammonis 1 pyramidal neurons in gerbil
transient ischemia. Neuropathology. 20:221–227. 2000. View Article : Google Scholar
|
32
|
He Z, Meschia JF, Brott TG, Dickson DW and
McKinney M: Aging is neuroprotective during global ischemia but
leads to increased caspase-3 and apoptotic activity in hippocampal
neurons. Curr Neurovasc Res. 3:181–186. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Takagi Y, Horikawa F, Nozaki K, Sugino T,
Hashimoto N and Yodoi J: Expression and distribution of redox
regulatory protein, thioredoxin during transient focal brain
ischemia in the rat. Neurosci Lett. 251:25–28. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Baltan S: Ischemic injury to white matter:
an age-dependent process. Neuroscientist. 15:126–133. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang L and Jiang DM: Neuroprotective
effect of Buyang Huanwu Decoction on spinal ischemia/reperfusion
injury in rats. J Ethnopharmacol. 124:219–223. 2009. View Article : Google Scholar : PubMed/NCBI
|