1
|
Wencker D, Chandra M, Nguyen K, et al: A
mechanistic role for cardiac myocyte apoptosis in heart failure. J
Clin Invest. 111:1497–1504. 2003. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Mihl C, Dassen WR and Kuipers H: Cardiac
remodelling: concentric versus eccentric hypertrophy in strength
and endurance athletes. Neth Heart J. 16:129–133. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Qipshidze-Kelm N, Piell KM, Solinger JC
and Cole MP: Co-treatment with conjugated linoleic acid and nitrite
protects against myocardial infarction. Redox Biol. 2:1–7. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Whaley-Connell A, Johnson MS and Sowers
JR: Aldosterone: role in the cardiometabolic syndrome and resistant
hypertension. Prog Cardiovasc Dis. 52:401–409. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aroor AR, Demarco VG, Jia G, et al: The
role of tissue renin-angiotensin-aldosterone system in the
development of endothelial dysfunction and arterial stiffness.
Front Endocrinol (Lausanne). 4:1612013.
|
6
|
Sayer G and Bhat G: The
renin-angiotensin-aldosterone system and heart failure. Cardiol
Clin. 32:21–32. 2014. View Article : Google Scholar
|
7
|
Xuan CL, Yao FR, Guo LR, et al: Comparison
of extracts from cooked and raw lentil in antagonizing angiotensin
II-induced hypertension and cardiac hypertrophy. Eur Rev Med
Pharmacol Sci. 17:2644–2653. 2013.PubMed/NCBI
|
8
|
Bendall JK, Cave AC, Heymes C, Gall N and
Shah AM: Pivotal role of a gp91(phox)-containing NADPH oxidase in
angiotensin II-induced cardiac hypertrophy in mice. Circulation.
105:293–296. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Byrne JA, Grieve DJ, Bendall JK, et al:
Contrasting roles of NADPH oxidase isoforms in pressure-overload
versus angiotensin II-induced cardiac hypertrophy. Circ Res.
93:802–805. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nakagami H, Takemoto M and Liao JK: NADPH
oxidase-derived superoxide anion mediates angiotensin II-induced
cardiac hypertrophy. J Mol Cell Cardiol. 35:851–859. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Adams JW, Pagel AL, Means CK, Oksenberg D,
Armstrong RC and Brown JH: Cardiomyocyte apoptosis induced by
Galphaq signaling is mediated by permeability transition pore
formation and activation of the mitochondrial death pathway. Circ
Res. 87:1180–1187. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dong XZ, Zhang M, Wang K, et al:
Sanguinarine inhibits vascular endothelial growth factor release by
generation of reactive oxygen species in MCF-7 human mammary
adenocarcinoma cells. Biomed Res Int. 2013:5176982013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chaturvedi MM, Kumar A, Darnay BG, Chainy
GB, Agarwal S and Aggarwal BB: Sanguinarine (pseudochelerythrine)
is a potent inhibitor of NF-kappaB activation, IkappaBalpha
phosphorylation and degradation. J Biol Chem. 272:30129–30134.
1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ahmad N, Gupta S, Husain MM, Heiskanen KM
and Mukhtar H: Differential antiproliferative and apoptotic
response of sanguinarine for cancer cells versus normal cells. Clin
Cancer Res. 6:1524–1528. 2000.PubMed/NCBI
|
15
|
Burgeiro A, Bento AC, Gajate C, Oliveira
PJ and Mollinedo F: Rapid human melanoma cell death induced by
sanguinarine through oxidative stress. Eur J Pharmacol.
705:109–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Deng W, Fang Y, Liu Y, et al: Sanguinarine
protects against pressure overloadinduced cardiac remodeling via
inhibition of nuclear factor-kappaB activation. Mol Med Rep.
10:211–216. 2014.PubMed/NCBI
|
17
|
Choi WY, Jin CY, Han MH, et al:
Sanguinarine sensitizes human gastric adenocarcinoma AGS cells to
TRAIL-mediated apoptosis via down-regulation of AKT and activation
of caspase-3. Anticancer Res. 29:4457–4465. 2009.PubMed/NCBI
|
18
|
Liu JJ, Li DL, Zhou J, et al:
Acetylcholine prevents angiotensin II-induced oxidative stress and
apoptosis in H9c2 cells. Apoptosis. 16:94–103. 2011. View Article : Google Scholar
|
19
|
Chu CH, Lo JF, Hu WS, et al: Histone
acetylation is essential for ANG-II-induced IGF-IIR gene expression
in H9c2 cardiomyoblast cells and pathologically hypertensive rat
heart. J Cell Physiol. 227:259–268. 2012. View Article : Google Scholar
|
20
|
Chang YM, Tsai CT, Wang CC, et al:
Alpinate oxyphyllae fructus (Alpinia Oxyphylla Miq) extracts
inhibit angiotensin-II induced cardiac apoptosis in H9c2
cardiomyoblast cells. Biosci Biotechnol Biochem. 77:229–234. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kumar A, Husain F, Das M and Khanna SK: An
out-break of epidemic dropsy in the Barabanki District of Uttar
Pradesh, India: a limited trial for the scope of antioxidants in
the management of symptoms. Biomed Environ Sci. 5:251–256.
1992.PubMed/NCBI
|
22
|
Vavrecková C, Ulrichová J, Hajdúch M,
Grambal F, Weigl E and Simánek V: Effect of quaternary
benzo[c]phenanthridine alkaloids sanguinarine, chelerythrine and
fagaronine on some mammalian cells. Acta Univ Palacki Olomuc Fac
Med. 138:7–10. 1994.
|
23
|
Chaturvedi MM, Kumar A, Darnay BG, Chainy
GB, Agarwal S and Aggarwal BB: Sanguinarine (pseudochelerythrine)
is a potent inhibitor of NF-kappaB activation, IkappaBalpha
phosphorylation, and degradation. J Biol Chem. 272:30129–30134.
1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ulrichova J, Dvorák Z, Vicar J, et al:
Cytotoxicity of natural compounds in hepatocyte cell culture
models. The case of quaternary benzo[c]phenanthridine alkaloids.
Toxicol Lett. 125:125–132. 2001. View Article : Google Scholar
|
25
|
Varga Z, Czompa A, Kakuk G and Antus S:
Inhibition of the superoxide anion release and hydrogen peroxide
formation in PMNLs by flavonolignans. Phytother Res. 15:608–612.
2001. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Qin F, Patel R, Yan C and Liu W: NADPH
oxidase is involved in angiotensin II-induced apoptosis in H9C2
cardiac muscle cells: effects of apocynin. Free Radic Biol Med.
40:236–246. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim YM, Guzik TJ, Zhang YH, et al: A
myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative
stress in human atrial fibrillation. Circ Res. 97:629–636. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Niccoli G, Celestini A, Calvieri C, et al:
Patients with micro-vascular obstruction after primary percutaneous
coronary intervention show a gp91phox (NOX2) mediated persistent
oxidative stress after reperfusion. Eur Heart J Acute Cardiovasc
Care. 2:379–388. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang G, Anrather J, Glass MJ, et al: Nox2,
Ca2+ and protein kinase C play a role in angiotensin II-induced
free radical production in nucleus tractus solitarius.
Hypertension. 48:482–489. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang J, Chandrashekar K, Lu Y, et al:
Enhanced expression and activity of Nox2 and Nox4 in the macula
densa in ANG II-induced hypertensive mice. Am J Physiol Renal
Physiol. 306:F344–F350. 2014. View Article : Google Scholar :
|
31
|
Kuroda J and Sadoshima J: NADPH oxidase
and cardiac failure. J Cardiovasc Transl Res. 3:314–320. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Nabeebaccus A, Zhang M and Shah AM: NADPH
oxidases and cardiac remodelling. Heart Fail Rev. 16:5–12. 2011.
View Article : Google Scholar
|
33
|
Ide T, Tsutsui H, Kinugawa S, et al:
Mitochondrial electron transport complex I is a potential source of
oxygen free radicals in the failing myocardium. Circ Res.
85:357–363. 1999. View Article : Google Scholar : PubMed/NCBI
|