High-density lipoprotein synthesis and metabolism (Review)
- Authors:
- Lingyan Zhou
- Congcong Li
- Ling Gao
- Aihong Wang
-
Affiliations: Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China, Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China - Published online on: June 15, 2015 https://doi.org/10.3892/mmr.2015.3930
- Pages: 4015-4021
This article is mentioned in:
Abstract
Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL, et al: Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest. 115:1333–1342. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P, et al: Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 117:746–756. 2007. View Article : Google Scholar : PubMed/NCBI | |
Davidsson P, Hulthe J, Fagerberg B and Camejo G: Proteomics of apolipoproteins and associated proteins from plasma high-density lipoproteins. Arterioscler Thromb Vasc Biol. 30:156–163. 2010. View Article : Google Scholar | |
Boisfer E, Stengel D, Pastier D, Laplaud PM, Dousset N, Ninio E and Kalopissis AD: Antioxidant properties of HDL in transgenic mice overexpressing human apolipoprotein A-II. J Lipid Res. 43:732–741. 2002.PubMed/NCBI | |
Kontush A, Chantepie S and Chapman MJ: Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol. 23:1881–1888. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rosenson RS, Brewer HB Jr, Chapman MJ, et al: HDL measures, particle heterogeneity, proposed nomenclature, and relation toatherosclerotic cardiovascular events. Clin Chem. 57:392–410. 2007. View Article : Google Scholar | |
Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, Phillips MC and Rothblat GH: Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res. 50:275–284. 2009. View Article : Google Scholar : | |
de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, Cuchel M, Rader DJ and Rothblat GH: The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler Thromb Vasc Biol. 30:796–801. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Dhanasekaran P, Nguyen D, Deridder E, Holvoet P, Lund-Katz S and Phillips MC: α-helix formation is required for high affinity binding of human apolipoprotein A-I to lipids. J Biol Chem. 279:20974–20981. 2004. View Article : Google Scholar : PubMed/NCBI | |
Duong PT, Weibel GL, Lund-Katz S, Rothblat GH and Phillips MC: Characterization and properties of pre beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J Lipid Res. 49:1006–1014. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang N and Tall AR: Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler Thromb Vasc Biol. 23:1178–1184. 2003. View Article : Google Scholar : PubMed/NCBI | |
McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, Hoppe KL, Roach ML, Royer LJ, de Wet J, et al: High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci USA. 97:4245–4250. 2000. View Article : Google Scholar : PubMed/NCBI | |
Voloshyna I and Reiss AB: The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 50:213–224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, et al: Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 22:336–345. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W, Drobnik W, Barlage S, Büchler C, Porsch-Ozcürümez M, et al: The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 22:347–351. 1999. View Article : Google Scholar : PubMed/NCBI | |
Voloshyna I and Reiss AB: The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 50:213–224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mendez AJ, Lin G, Wade DP, Lawn RM and Oram JF: Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem. 276:3158–3166. 2001. View Article : Google Scholar | |
Drobnik W, Borsukova H, Böttcher A, Pfeiffer A, Liebisch G, Schütz GJ, Schindler H and Schmitz G: Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic. 3:268–278. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Hao M, Luo Y, Liang CP, Silver DL, Cheng C, Maxfield FR and Tall AR: Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J Biol Chem. 278:5813–5820. 2003. View Article : Google Scholar | |
Yamauchi Y, Abe-Dohmae S and Yokoyama S: Differential regulation of apolipoprotein A-I/ATP binding cassette transporter A1-mediated cholesterol and phospholipid release. Biochim Biophys Acta. 1585:1–10. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Lan D, Chen W, Matsuura F and Tall AR: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA. 101:9774–9779. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vaughan AM and Oram JF: ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem. 280:30150–30157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L and Jessup W: ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 26:534–540. 2006. View Article : Google Scholar | |
Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE and Schmitz G: Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): Evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun. 257:29–33. 1999. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Qin L, Yu H, Lv F and Wang Y: Apolipoprotein A-I and adenosine triphosphate-binding cassette transporter A1 expression alleviates lipid accumulation in hepatocytes. J Gastroenterol Hepatol. 29:614–622. 2014. View Article : Google Scholar | |
O'Connell BJ, Denis M and Genest J: Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation. 110:2881–2888. 2004. View Article : Google Scholar : PubMed/NCBI | |
Terasaka N, Wang N, Yvan-Charvet L and Tall AR: High-density lipoprotein protects macrophages from oxidized low-density lipo-protein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA. 104:15093–15098. 2007. View Article : Google Scholar | |
Rye KA: Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease. Clin Exp Nephrol. 18:247–250. 2014. View Article : Google Scholar | |
Simonelli S, Tinti C, Salvini L, Tinti L, Ossoli A, Vitali C, Sousa V, Orsini G, Nolli ML, Franceschini G, et al: Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency. Biologicals. 41:446–449. 2013. View Article : Google Scholar : PubMed/NCBI | |
Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, et al: Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler Thromb Vasc Biol. 29:1930–1936. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brundert M, Ewert A, Heeren J, Behrendt B, Ramakrishnan R, Greten H, Merkel M and Rinninger F: Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler Thromb Vasc Biol. 25:143–148. 2005. | |
Pagler TA, Rhode S, Neuhofer A, Laggner H, et al: SR-BI-mediated high density lipoprotein (HDL)endocytosis leads to HDL resecretion facilitatingcholesterol efflux. J Biol Chem. 281:11193–11204. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gillotte-Taylor K, Boullier A, Witztum JL, Steinberg D and Quehenberger O: Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J Lipid Res. 42:1474–1482. 2001.PubMed/NCBI | |
Barter P and Rye KA: Cholesteryl ester transfer protein: Its role in plasma lipid transport. Clin Exp Pharmacol Physiol. 21:663–672. 1994. View Article : Google Scholar : PubMed/NCBI | |
Tall AR: Plasma cholesteryl ester transfer protein and high-density lipoproteins: New insights from molecular genetic studies. J Intern Med. 237:5–12. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yan F, Zhang S, Lei D, Charles MA, Cavigiolio G, Oda M, Krauss RM, Weisgraber KH, Rye KA, et al: Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol. 8:342–349. 2012. View Article : Google Scholar : PubMed/NCBI | |
Beisiegel U: New aspects on the role of plasma lipases in lipoprotein catabolism and atherosclerosis. Atherosclerosis. 124:1–8. 1996. View Article : Google Scholar : PubMed/NCBI | |
Olivecrona G and Olivecrona T: Triglyceride lipases and atherosclerosis. Curr Opin Lipidol. 6:291–305. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lamarche B, Uffelman KD, Carpentier A, Cohn JS, Steiner G, Barrett PH and Lewis GF: Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest. 103:1191–1199. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cappel DA, Palmisano BT, Emfinger CH, Martinez MN, McGuinness OP and Stafford JM: Cholesteryl ester transfer protein protects against insulin resistance in obese female mice. Mol Metab. 2:457–467. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fisher EA, Feig JE, Hewing B, Hazen SL and Smith JD: High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 32:2813–2820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al: Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation. 125:1905–1919. 2012. View Article : Google Scholar : PubMed/NCBI | |
Groen AK, Oude Elferink RP, Verkade HJ and Kuipers F: The ins and outs of reverse cholesterol transport. Ann Med. 36:135–145. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ono K and Ono K: Current concept of reverse cholesterol transport and novel strategy for atheroprotection. J Cardiol. 60:339–343. 2012. View Article : Google Scholar : PubMed/NCBI | |
Freeman SR, Jin X, Anzinger JJ, Xu Q, Purushothaman S, Fessler MB, Addadi L and Kruth HS: ABCG1-mediated generation of extracellular cholesterol microdomains. J Lipid Res. 55:115–127. 2014. View Article : Google Scholar : | |
Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH and Rader DJ: Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 115:2870–2874. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Silver DL, Smith JD and Tall AR: Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J Biol Chem. 275:30794–30800. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yvan-Charvet L, Pagler TA, Wang N, Senokuchi T, Brundert M, Li H, Rinninger F and Tall AR: SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. J Lipid Res. 49:107–114. 2008. View Article : Google Scholar | |
Gromelski S and Brezesinski G: DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir. 22:6293–6301. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu D and Rhodes DG: Binding of phosphorothioate oligonucle-otides to zwitterionic liposomes. Biochim Biophys Acta. 1563:45–52. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD and Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yvan-Charvet L, Wang N and Tall AR: Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 30:139–143. 2010. View Article : Google Scholar : | |
Barter PJ, Puranik R and Rye KA: New insights into the role of HDL as an anti-inflammatory agent in the prevention of cardiovascular disease. Curr Cardiol Rep. 9:493–498. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schmidt A, Geigenmüller S, Völker W and Buddecke E: The antiatherogenic and antiinflammatory effect of HDL-associated lysosphingolipids operates via Akt–>NF-kappaB signalling pathways in human vascular endothelial cells. Basic Res Cardiol. 101:109–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mineo C, Deguchi H, Griffin JH and Shaul PW: Endothelial and antithrombotic actions of HDL. Circ Res. 98:1352–1364. 2006. View Article : Google Scholar : PubMed/NCBI | |
Landmesser U: High density lipoprotein – should we raise it? Curr Vasc Pharmacol. 10:718–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER and Krieger M: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 387:414–417. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J and Krieger M: A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA. 94:12610–12615. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rader DJ: Molecular regulation of HDL metabolism and function: Implications for novel therapies. J Clin Invest. 116:3090–3100. 2006. View Article : Google Scholar : PubMed/NCBI | |
Glass C, Pittman RC, Weinstein DB and Steinberg D: Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: Selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad Sci USA. 80:5435–5439. 1983. View Article : Google Scholar : PubMed/NCBI | |
Christensen EI and Gburek J: Protein reabsorption in renal proximal tubule-function and dysfunction in kidney patho-physiology. Pediatr Nephrol. 19:714–721. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luo Y and Tall AR: Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J Clin Invest. 105:513–520. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA, et al: Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 272:3137–3140. 1997. View Article : Google Scholar : PubMed/NCBI | |
Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE and Mangelsdorf DJ: Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 93:693–704. 1998. View Article : Google Scholar : PubMed/NCBI | |
Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL and Mangelsdorf DJ: Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819–2830. 2000. View Article : Google Scholar : PubMed/NCBI | |
Costet P, Luo Y, Wang N and Tall AR: Sterol-dependent transac-tivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 275:28240–28245. 2000.PubMed/NCBI | |
Schwartz K, Lawn RM and Wade DP: ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun. 274:794–802. 2000. View Article : Google Scholar : PubMed/NCBI | |
Malerød L, Juvet LK, Hanssen-Bauer A, Eskild W and Berg T: Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun. 299:916–923. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X and Wang Y: Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway. Biochem Biophys Res Commun. 441:321–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rigamonti E, Chinetti-Gbaguidi G and Staels B: Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler Thromb Vasc Biol. 28:1050–1059. 2008. View Article : Google Scholar : PubMed/NCBI | |
Briand F, Naik SU, Fuki I, Millar JS, Macphee C, Walker M, Billheimer J, Rothblat G and Rader DJ: Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci. 2:127–133. 2009. View Article : Google Scholar |