Structure and function of Gab2 and its role in cancer (Review)
- Authors:
- Chen‑Bo Ding
- Wei‑Na Yu
- Ji‑Hong Feng
- Jun‑Min Luo
-
Affiliations: Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China, Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China - Published online on: June 17, 2015 https://doi.org/10.3892/mmr.2015.3951
- Pages: 4007-4014
-
Copyright: © Ding et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Wöhrle FU, Daly RJ and Brummer T: Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal. 7:222009. View Article : Google Scholar : PubMed/NCBI | |
Gu H and Neel BG: The 'Gab' in signal transduction. Trends Cell Biol. 13:122–130. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Lowell CA, Neel BG and Gu H: Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcepsilonRI. J Immunol. 176:2421–2429. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lock LS, Royal I, Naujokas MA and Park M: Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases. J Biol Chem. 275:31536–31545. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH and Neel BG: New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol. 20:7109–7120. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu WM, Hawley TS, Hawley RG and Qu CK: Role of the docking protein Gab2 in beta (1)-integrin signaling pathway-mediated hematopoietic cell adhesion and migration. Blood. 99:2351–2359. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hibi M and Hirano T: Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk Lymphoma. 37:299–307. 2000.PubMed/NCBI | |
Wickrema A, Uddin S, Sharma A, Chen F, Alsayed Y, Ahmad S, Sawyer ST, Krystal G, Yi T, Nishada K, et al: Engagement of Gab1 and Gab2 in erythropoietin signaling. J Biol Chem. 274:24469–24474. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, Atsumi T, Takahashi-Tezuka M, Ishihara K, Hibi M, et al: Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood. 93:1809–1816. 1999.PubMed/NCBI | |
Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M, et al: Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood. 99:1866–1869. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y, Pratt JC, Lin G, Lim B, Kinet JP, et al: Essential role for Gab2 in the allergic response. Nature. 412:186–190. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang Z, Haviernikova E, Rowe S, Qu CK, Tse W, Shannon KM, et al: Abnormal hemato-poiesis in Gab2 mutant mice. Blood. 110:116–124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, Harris LN, Richardson A, Neel BG and Gu H: A role for the scaffolding adapter GAB2 in breast cancer. Nat Med. 12:114–121. 2006. View Article : Google Scholar | |
Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA and Daly RJ: Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem. 281:626–637. 2006. View Article : Google Scholar | |
Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, et al: Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 1:479–492. 2002. View Article : Google Scholar : PubMed/NCBI | |
Teal HE, Ni S, Xu J, Finkelstein LD, Cheng AM, Paulson RF, Feng GS and Correll PH: GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene. 25:2433–2443. 2006. View Article : Google Scholar | |
Pan XL, Ren RJ, Wang G, Tang HD and Chen SD: The Gab2 in signal transduction and its potential role in the pathogenesis of Alzheimer's disease. Neurosci Bull. 26:241–246. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maus M, Medgyesi D, Kövesdi D, Csuka D, Koncz G and Sármay G: Grb2 associated binder 2 couples B-cell receptor to cell survival. Cell Signal. 21:220–227. 2009. View Article : Google Scholar | |
Sármay G, Angyal A, Kertész A, Maus M and Medgyesi D: The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immunol Lett. 104:76–82. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pyarajan S, Matejovic G, Pratt JC, Baksh S and Burakoff SJ: Interleukin-3 (IL-3)-induced c-fos activation is modulated by Gab2-calcineurin interaction. J Biol Chem. 283:23505–23509. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tripathi A and Sodhi A: Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiology. 214:430–440. 2009. View Article : Google Scholar : PubMed/NCBI | |
Neel BG, Gu H and Pao L: The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 28:284–293. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gu H, Pratt JC, Burakoff SJ and Neel BG: Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell. 2:729–740. 1998. View Article : Google Scholar | |
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ and Park M: The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 20:8513–8525. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Luo J, Yang W, Wang Y, Mizuki M, Kanakura Y, Besmer P, Neel BG and Gu H: The scaffolding adapter Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J Biol Chem. 281:28615–28626. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M and Marshall AJ: Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev. 232:255–272. 2009. View Article : Google Scholar : PubMed/NCBI | |
Montagner A, Yart A, Dance M, Perret B, Salles JP and Raynal P: A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem. 280:5350–5360. 2005. View Article : Google Scholar | |
Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK and Wong AJ: A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 379:560–564. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gual P, Shigematsu S, Kanzaki M, Grémeaux T, Gonzalez T, Pessin JE, Le Marchand-Brustel Y and Tanti JF: A Crk-II/TC10 signaling pathway is required for osmotic shock-stimulated glucose transport. J Biol Chem. 277:43980–43986. 2002. View Article : Google Scholar : PubMed/NCBI | |
Crouin C, Arnaud M, Gesbert F, Camonis J and Bertoglio J: A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners. FEBS lett. 495:148–153. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z and Feng GS: GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2. J Biol Chem. 278:34641–34653. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simister PC and Feller SM: Order and disorder in large multi-site docking proteins of the Gab family-implications for signalling complex formation and inhibitor design strategies. Mol Biosyst. 8:33–46. 2012. View Article : Google Scholar | |
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K and Gouilleux F: Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J. 390:359–366. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Zhao C, Feng GS, Paulson RF and Correll PH: A novel Stat3 binding motif in Gab2 mediates transformation of primary hematopoietic cells by the Stk/Ron receptor tyrosine kinase in response to Friend virus infection. Mol Cell Biol. 27:3708–3715. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fleuren ED, O'Toole S, Millar EK, McNeil C, Lopez-Knowles E, Boulghourjian A, Croucher DR, Schramek D, Brummer T, Penninger JM, et al: Overexpression of the oncogenic signal transducer Gab2 occurs early in breast cancer development. Int J Cancer. 127:1486–1492. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bocanegra M, Bergamaschi A, Kim YH, Miller MA, Rajput AB, Kao J, Langerød A, Han W, Noh DY, Jeffrey SS, et al: Focal amplification and oncogene dependency of GAB2 in breast cancer. Oncogene. 29:774–779. 2010. View Article : Google Scholar | |
Herrera Abreu MT, Hughes WE, Mele K, Lyons RJ, Rickwood D, Browne BC, Bennett HL, Vallotton P, Brummer T and Daly RJ: Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell. 22:105–116. 2011. View Article : Google Scholar | |
Zhang X, Lavoie G, Fort L, Huttlin EL, Tcherkezian J, Galan JA, Gu H, Gygi SP, Carreno S and Roux PP: Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol Cell Biol. 33:1657–1670. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ke Y, Wu D, Princen F, Nguyen T, Pang Y, Lesperance J, Muller WJ, Oshima RG and Feng GS: Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene. 26:4951–4960. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qian P, Zuo Z, Wu Z, Meng X, Li G, Wu Z, Zhang W, Tan S, Pandey V, Yao Y, et al: Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Res. 71:6463–6474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nasrazadani A and Van Den Berg CL: c-Jun N-terminal Kinase 2 regulates multiple receptor tyrosine kinase pathways in mouse mammary tumor growth and metastasis. Genes Cancer. 2:31–45. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Yamanoshita O, Iida M, Ohgami N, Tamura H, Kawamoto Y, et al: RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy. Dermatol Res Pract. 2012:3541912012. | |
McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D'Assoro AB, et al: Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 46:249–279. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, et al: GAB2 amplifi-cations refine molecular classification of melanoma. Clin Cancer Res. 15:4288–4291. 2009. View Article : Google Scholar : PubMed/NCBI | |
Horst B, Gruvberger-Saal SK, Hopkins BD, Bordone L, Yang Y, Chernoff KA, Uzoma I, Schwipper V, Liebau J, Nowak NJ, et al: Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol. 174:1524–1533. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wu J, Demir A, Castillo-Martin M, Melamed RD, Zhang G, Fukunaga-Kanabis M, Perez-Lorenzo R, Zheng B, Silvers DN, et al: GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene. 32:3627–3637. 2013. View Article : Google Scholar | |
Brown LA, Kalloger SE, Miller MA, Shih IeM, McKinney SE, Santos JL, Swenerton K, Spellman PT, Gray J, Gilks CB, et al: Amplification of 11q13 in ovarian carcinoma. Genes Chromosomes Cancer. 47:481–489. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Sheng Q, Spillman MA, Behbakht K and Gu H: Gab2 regulates the migratory behaviors and E-cadherin expression via activation of the PI3K pathway in ovarian cancer cells. Oncogene. 31:2512–2520. 2012. View Article : Google Scholar : | |
Sheng Q, Liu X, Fleming E, Yuan K, Piao H, Chen J, Moustafa Z, Thomas RK, Greulich H, Schinzel A, et al: An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell. 17:298–310. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Cheung HW, Agarwalla PK, Thomas S, Zektser Y, Karst AM, Boehm JS, Weir BA, Berlin AM, Zou L, et al: In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene. Proc Natl Acad Sci USA. 111:1102–1107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davis SJ, Sheppard KE, Pearson RB, Campbell IG, Gorringe KL and Simpson KJ: Functional analysis of genes in regions commonly amplified in high-grade serous and endometrioid ovarian cancer. Clin Cancer Res. 19:1411–1421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aumann K, Lassmann S, Schöpflin A, May AM, Wöhrle FU, Zeiser R, Waller CF, Hauschke D, Werner M and Brummer T: The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Hum Pathol. 42:719–726. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Romani J, Zaborski M, MacLeod RA, Nagel S, Drexler HG and Quentmeier H: Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. PLoS One. 8:e835102013. View Article : Google Scholar : PubMed/NCBI | |
Wohrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner M, et al: Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia. 27:118–129. 2013. View Article : Google Scholar | |
Brummer T, Larance M, Herrera Abreu MT, Lyons RJ, Timpson P, Emmerich CH, Fleuren ED, Lehrbach GM, Schramek D, Guilhaus M, et al: Phosphorylation-dependent binding of 14–3 –3 terminates signalling by the Gab2 docking protein. EMBO J. 27:2305–2316. 2008. View Article : Google Scholar | |
Wöhrle FU, Daly RJ and Brummer T: How to Grb2 a Gab. Structure. 17:779–781. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carlberg K and Rohrschneider LR: Characterization of a novel tyrosine phosphorylated 100-kDa protein that binds to SHP-2 and phosphatidylinositol 3′-kinase in myeloid cells. J Biol Chem. 272:15943–15950. 1997. View Article : Google Scholar : PubMed/NCBI | |
Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A and Eder M: Enhanced sensitivity to inhibition of SHP2, STAT5 and Gab2 expression in chronic myeloid leukemia (CML). Blood. 107:3279–3287. 2006. View Article : Google Scholar | |
Zatkova A, Schoch C, Speleman F, Poppe B, Mannhalter C, Fonatsch C and Wimmer K: GAB2 is a novel target of 11q amplification in AML/MDS. Genes Chromosomes Cancer. 45:798–807. 2006. View Article : Google Scholar : PubMed/NCBI | |
Adams SJ, Aydin IT and Celebi JT: GAB2 - a scaffolding protein in cancer. Mol Cancer Res. 10:1265–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mali RS, Ma P, Zeng LF, Martin H, Ramdas B, He Y, Sims E, Nabinger S, Ghosh J, Sharma N, et al: Role of SHP2 phosphatase in KIT-induced transformation: Identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood. 120:2669–2678. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S and Hantschel O: Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc Natl Acad Sci USA. 110:14924–14929. 2013. View Article : Google Scholar : PubMed/NCBI | |
Halbach S, Rigbolt KT, Wöhrle FU, Diedrich B, Gretzmeier C, Brummer T and Dengjel J: Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal. 11:302013. View Article : Google Scholar : PubMed/NCBI | |
Samanta A, Perazzona B, Chakraborty S, Sun X, Modi H, Bhatia R, Priebe W and Arlinghaus R: Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia. 25:463–472. 2011. View Article : Google Scholar : | |
Kotecha N, Flores NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S, Diaz-Flores E, Coram M, Shannon KM, Nolan GP, et al: Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell. 14:335–343. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagao T, Kurosu T, Umezawa Y, Nogami A, Oshikawa G, Tohda S, Yamamoto M and Miura O: Proliferation and survival signaling from both Jak2-V617F and Lyn involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute myeloid leukemia transformed from polycythemia vera. PLoS One. 9:e847462014. View Article : Google Scholar : PubMed/NCBI | |
Heuser M, Sly LM, Argiropoulos B, Kuchenbauer F, Lai C, Weng A, Leung M, Lin G, Brookes C, Fung S, et al: Modeling the functional heterogeneity of leukemia stem cells: Role of STAT5 in leukemia stem cell self-renewal. Blood. 114:3983–3993. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lauchle JO, Braun BS, Loh ML and Shannon K: Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer. 46:579–585. 2006. View Article : Google Scholar | |
Emanuel PD: Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia. 22:1335–1342. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hählen K, Hasle H, Licht JD and Gelb BD: Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 34:148–150. 2003. View Article : Google Scholar : PubMed/NCBI | |
Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, et al: Mutations in PTPN11 implicate the SHP-2 phosphatase in leuke-mogenesis. Blood. 103:2325–2331. 2004. View Article : Google Scholar | |
Keilhack H, David FS, McGregor M, Cantley LC and Neel BG: Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem. 280:30984–30993. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu WM, Daino H, Chen J, Bunting KD and Qu CK: Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. J Biol Chem. 281:5426–5434. 2006. View Article : Google Scholar | |
Kontaridis MI, Swanson KD, David FS, Barford D and Neel BG: PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 281:6785–6792. 2006. View Article : Google Scholar | |
Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, et al: Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer cell. 7:179–191. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu XL, Wang X, Chen ZL, Jin M, Yang W, Zhao GF and Li JW: Overexpression of Grb2-associated binder 2 in human lung cancer. Int J Biol Sci. 7:496–504. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maulik G, Madhiwala P, Brooks S, Ma PC, Kijima T, Tibaldi EV, Schaefer E, Parmar K and Salgia R: Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J Cell Mol Med. 6:539–553. 2002. View Article : Google Scholar | |
Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q and Ke Y: Docking protein Gab2 regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. FASEB J. 26:4603–4613. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Sun X, Zhang J, Zhao C, Li H, Liu Z, Fang C, Wang X, Zhao C, Zhang X, et al: Gab2 expression in glioma and its implications for tumor invasion. Acta Oncol. 52:1739–1750. 2013. View Article : Google Scholar | |
Lee SH, Jeong EG, Nam SW, Lee JY, Yoo NJ and Lee SH: Increased expression of Gab2, a scaffolding adaptor of the tyrosine kinase signalling, in gastric carcinomas. Pathology. 39:326–329. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng Q, Yi B, Wang A and Jiang X: Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis. Onco Targets Ther. 6:1675–1684. 2013.PubMed/NCBI | |
Fan YL, Zheng M, Tang YL and Liang XH: A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncol Lett. 6:1174–1180. 2013.PubMed/NCBI |