1
|
Hinton RJ: Genes that regulate
morphogenesis and growth of the temporomandibular joint: A review.
Dev Dyn. 243:864–874. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang Y, Liu C, Rohr J, Liu H, He F, Yu J,
Sun C, Li L, Gu S and Chen Y: Tissue interaction is required for
glenoid fossa development during temporomandibular joint formation.
Dev Dyn. 240:2466–2473. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, Li
X, Chen J, Long F and Chen Y: BMPRIA mediated signaling is
essential for temporomandibular joint development in mice. PLoS
One. 9:e1010002014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y
and Chen Y: Replacing Shox2 with human SHOX leads to congenital
disc degeneration of the temporomandibular joint in mice. Cell
Tissue Res. 355:345–354. 2014. View Article : Google Scholar :
|
5
|
Ochiai T, Shibukawa Y, Nagayama M, Mundy
C, Yasuda T, Okabe T, Shimono K, Kanyama M, Hasegawa H, Maeda Y, et
al: Indian hedgehog roles in post-natal TMJ development and
orga-nization. J Dent Res. 89:349–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shibukawa Y, Young B, Wu C, Yamada S, Long
F, Pacifici M and Koyama E: Temporomandibular joint formation and
condyle growth require Indian hedgehog signaling. Dev Dyn.
236:426–434. 2007. View Article : Google Scholar
|
7
|
Purcell P, Joo BW, Hu JK, Tran PV,
Calicchio ML, O'Connell DJ, Maas RL and Tabin CJ: Temporomandibular
joint formation requires two distinct hedgehog-dependent steps.
Proc Natl Acad Sci USA. 106:18297–18302. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vortkamp A, Lee K, Lanske B, Segre GV,
Kronenberg HM and Tabin CJ: Regulation of rate of cartilage
differentiation by Indian hedgehog and PTH-related protein.
Science. 273:613–622. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lanske B, Karaplis AC, Lee K, Luz A,
Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, et
al: PTH/PTHrP receptor in early development and Indian
hedgehog-regulated bone growth. Science. 273:663–666. 1996.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Corbit KC, Aanstad P, Singla V, Norman AR,
Stainier DY and Reiter JF: Vertebrate Smoothened functions at the
primary cilium. Nature. 437:1018–1021. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Koyama E, Young B, Nagayama M, Shibukawa
Y, Enomoto-Iwamoto M, Iwamoto M, Maeda Y, Lanske B, Song B, Serra
R, et al: Conditional Kif3a ablation causes abnormal hedgehog
signaling topography, growth plate dysfunction, and excessive bone
and cartilage formation during mouse skeletogenesis. Development.
134:2159–2169. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Haycraft CJ, Banizs B, Aydin-Son Y, Zhang
Q, Michaud EJ and Yoder BK: Gli2 and Gli3 localize to cilia and
require the intrafla-gellar transport protein polaris for
processing and function. PLoS Genet. 1:e532005. View Article : Google Scholar
|
13
|
Gu S, Wei N, Yu L, Fei J and Chen Y:
Shox2-deficiency leads to dysplasia and ankylosis of the
temporomandibular joint in mice. Mech Dev. 125:729–742. 2008.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li X, Liang W, Ye H, Weng X, Liu F and Liu
X: Overexpression of Shox2 leads to congenital dysplasia of the
temporomandibular joint in mice. Int J Mol Sci. 15:13135–13150.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gkantidis N, Katsaros C and Chiquet M:
Detection of gelatinolytic activity in developing basement
membranes of the mouse embryo head by combining sensitive in situ
zymography with immunolabeling. Histochem Cell Biol. 138:557–571.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pessoa JI, Guimarães GN, Viola NV, da
Silva WJ, de Souza AP, Tjäderhane L, Line SR and Marques MR: In
situ study of the gelatinase activity in demineralized dentin from
rat molar teeth. Acta Histochem. 115:245–251. 2013. View Article : Google Scholar
|
17
|
Sakakura Y, Hosokawa Y, Tsuruga E, Irie K
and Yajima T: In situ localization of gelatinolytic activity during
development and resorption of Meckel's cartilage in mice. Eur J
Oral Sci. 115:212–223. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mori-Akiyama Y, Akiyama H, Rowitch DH and
de Crombrugghe B: Sox9 is required for determination of the
chondrogenic cell lineage in the cranial neural crest. Proc Natl
Acad Sci USA. 100:9360–9365. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shibata S and Yokohama-Tamaki T: An in
situ hybridization study of Runx2, Osterix, and Sox9 in the anlagen
of mouse mandibular condylar cartilage in the early stages of
embryogenesis. J Anat. 213:274–283. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Su SC, Tanimoto K, Tanne Y, Kunimatsu R,
Hirose N, Mitsuyoshi, Okamoto Y and Tanne K: Celecoxib exerts
protective effects on extracellular matrix metabolism of mandibular
condylar chondrocytes under excessive mechanical stress.
Osteoarthritis Cartilage. 22:845–851. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu YD, Liao LF, Zhang HY, Lu L, Jiao K,
Zhang M, Zhang J, He JJ, Wu YP, Chen D, et al: Reducing dietary
loading decreases mouse temporomandibular joint degradation induced
by anterior crossbite prosthesis. Osteoarthritis Cartilage.
22:302–312. 2014. View Article : Google Scholar :
|
22
|
Burrage PS, Mix KS and Brinckerhoff CE:
Matrix metalloproteinases: Role in arthritis. Front Biosci.
11:529–543. 2006. View
Article : Google Scholar
|
23
|
Touaitahuata H, Cres G, de Rossi S, Vives
V and Blangy A: The mineral dissolution function of osteoclasts is
dispensable for hypertrophic cartilage degradation during long bone
development and growth. Dev Biol. 393:57–70. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Inada M, Wang Y, Byrne MH, Rahman MU,
Miyaura C, López-Otín C and Krane SM: Critical roles for
collagenase-3 (Mmp13) in development of growth plate cartilage and
in endochondral ossification. Proc Natl Acad Sci USA.
101:17192–17197. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang SY, Herber RP, Ho SP and Alliston T:
Matrix metallo-proteinase-13 is required for osteocytic perilacunar
remodeling and maintains bone fracture resistance. J Bone Miner
Res. 27:1936–1950. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Malemud CJ: Matrix metalloproteinases:
Role in skeletal development and growth plate disorders. Front
Biosci. 11:1702–1715. 2006. View
Article : Google Scholar
|
27
|
Jackson MT, Moradi B, Smith MM, Jackson CJ
and Little CB: Activation of matrix metalloproteinases 2, 9, and 13
by activated protein C in human osteoarthritic cartilage
chondrocytes. Arthritis Rheumatol. 66:1525–1536. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Otero M, Plumb DA, Tsuchimochi K, Dragomir
CL, Hashimoto K, Peng H, Olivotto E, Bevilacqua M, Tan L, Yang Z,
et al: E74-like factor 3 (ELF3) impacts on matrix metalloproteinase
13 (MMP13) transcriptional control in articular chondrocytes under
proinflammatory stress. J Biol Chem. 287:3559–3572. 2012.
View Article : Google Scholar :
|
29
|
Zhang L, Yang M, Yang D, Cavey G, Davidson
P and Gibson G: Molecular interactions of MMP-13 C-terminal domain
with chondrocyte proteins. Connect Tissue Res. 51:230–239. 2010.
View Article : Google Scholar : PubMed/NCBI
|