1
|
Zhang MX and Wu YQ: The Diagnosis and
Treatment of Thyroid Disease. 1st. Pharmaceutical Science and
Technology Publishing House; Beijing: pp. 38–42. 2006, In
Chinese.
|
2
|
Tomer Y and Davies TF: Searching for the
autoimmune thyroid disease susceptibility genes: From gene mapping
to gene function. Endocr Rev. 24:694–717. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ban Y, Greenberg DA, Concepcion E,
Skrabanek L, Villanueva R and Tomer Y: Amino acid substitutions in
the thyroglobulin gene are associated with susceptibility to human
and murine autoimmune thyroid disease. Proc Natl Acad Sci USA.
100:15119–15124. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ban Y, Tozaki T, Taniyama M, Tomita M and
Ban Y: Association of a thyroglobulin gene polymorphism with
Hashimoto's thyroiditis in the Japanese population. Clin Endocrinol
(Oxf). 61:263–268. 2004. View Article : Google Scholar
|
5
|
Collins JE, Heward JM, Howson JM, Foxall
H, Carr-Smith J, Franklyn JA and Gough SC: Common allelic variants
of exons 10,12 and 33 of the thyroglobulin gene are not associated
with autoimmune thyroid disease in the United Kingdom. J Clin
Endocrinol Metab. 89:6336–6339. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Orita M, lwahana H, Kanazawa H, Hayashi K
and Sekiya T: Detection of polymorphisms of human DNA by gel
electrophoresis as single-strand conformation polymorphisms. Proc
Natl Acad Sci USA. 86:2766–2770. 1989. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lerman LS and Silverstein K: Computational
simulation of DNA melting and its application to denaturing
gradient gel electrophoresis. Methods Enzymol. 155:482–501. 1987.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Xiao W and Oefner PJ: Denaturing
high-performance liquid chromatography: A review. Hum Mutat.
17:439–474. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li Q, Liu Z, Monroe H and Culiat CT:
Integrated platform for detection of DNA sequence variants using
capillary array electrophoresis. Electrophoresis. 23:1499–1511.
2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Böcker S: Simulating multiplexed SNP
discovery rates using base-specific cleavage and mass spectrometry.
Bioinformatics. 23:e5–e12. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liao Y, Wang X, Sha C, Xia Z, Huang Q and
Li Q: Combination of fluorescence color and melting temperature as
a two-dimensional label for homogeneous multiplex PCR detection.
Nucleic Acids Res. 41:e762013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang CZ, Lin J, Qian J, Shao R, Xue D,
Qian W, Xiao GF, Deng ZQ, Yang J, Li Y, et al: Development of
high-resolution melting analysis for the detection of the MYD88
L265P mutation. Clin Biochem. 46:385–387. 2013. View Article : Google Scholar
|
13
|
Tindall EA, Petersen DC, Woodbridge P,
Schipany K and Hayes VM: Assessing high-resolution melt curve
analysis for accurate detection of gene variants in complex DNA
fragments. Hum Mutat. 30:876–883. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pang Y, Zhou Y, Wang S, Lu J, Lu B, He G,
Wang L and Zhao Y: A novel method based on high resolution melting
(HRM) analysis for MIRU-VNTR genotyping of Mycobacterium
tuberculosis. J Microbiol Methods. 86:291–297. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vossen RH, Aten E, Roos A and den Dunnen
JT: High-resolution melting analysis (HRMA): More than just
sequence variant screening. Hum Mutat. 30:860–866. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
de Juan Jiménez I, Cardeñosa EE, Suela SP,
González EB, Trejo DS, Lluch OF and Gilabert PB: Advantage of
high-resolution melting curve analysis over conformation-sensitive
gel electrophoresis for mutational screening of BRCA1 and BRCA2
genes. Clin Chim Acta. 412:578–582. 2011. View Article : Google Scholar
|
17
|
Minucci A, Canu G, Gentile L, Zuppi C,
Giardina B and Capoluongo E: Small amplicons high resolution
melting analysis (SA-HRMA) allows successful genotyping of acid
phosphatase 1 (ACP1) polymorphisms in the Italian population. Clin
Chim Acta. 416:86–91. 2013. View Article : Google Scholar
|
18
|
Liu SM, Xu FX, Shen F and Xie Y: Rapid
genotyping of APOA5-1131T>C polymorphism using high resolution
melting analysis with unlabeled probes. Gene. 498:276–279. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou L, Errigo RJ, Lu H, Poritz MA, Seipp
MT and Wittwer CT: Snapback primer genotyping with saturating DNA
dye and melting analysis. Clin Chem. 54:1648–1656. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Martín-Núñez GM, Gómez-Zumaquero JM,
Soriguer F and Morcillo S: High resolution melting curve analysis
of DNA samples isolated by different DNA extraction methods. Clin
Chem Acta. 413:331–333. 2012. View Article : Google Scholar
|
21
|
Rajaei M, Saadat I and Saadat M: High
resolution melting analysis for detection of variable number of
tandem repeats polymorphism of XRCC5. Biochem Biophys Res Commun.
425:398–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang TY, Wang L, Zhang JH and Dong WH: A
simplified universal genomic DNA extraction protocol suitable for
PCR. Genet Mol Res. 10:519–525. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Orgiazzi J: Autoimmune thyroid diseases,
an overview. Rev Prat. 64:822–824. 2014.In French. PubMed/NCBI
|
24
|
Okosieme OE, Parkes AB, Premawardhana LD,
Evans C and Lazarus JH: Thyroglobulin: Current aspects of its role
in autoimmune thyroid disease and thyroid cancer. Minerva Med.
94:319–330. 2003.
|
25
|
Okosieme OE, Premawardhana LD, Jayasinghe
A, Kaluarachi WN, Parkes AB, Smyth PP, Lejeune PJ, Ruf J and
Lazarus JH: Thyroglobulin autoantibodies in iodized subjects:
relationship between epitope specificities and longitudinal
antibody activity. Thyroid. 15:1067–1072. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang JA, Maier-Haba, Yu ZY, Xiao WX and
Wang Y: Association of thyroglobulin gene polymorphisms with
auto-immune thyroid diseases. J Fouth Mil Med Univ. 27:17482006.In
Chinese.
|