1
|
Robinson JG and Gidding SS: Curing
atherosclerosis should be the next major cardiovascular prevention
goal. J Am Coll Cardiol. 63:2779–2785. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fenyo IM and Gafencu AV: The involvement
of the monocytes/macrophages in chronic inflammation associated
with atherosclerosis. Immunobiology. 218:1376–1384. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Stocker R and Keaney JF Jr: Role of
oxidative modifications in atherosclerosis. Physiol Rev.
84:1381–1478. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim YW and Byzova TV: Oxidative stress in
angiogenesis and vascular disease. Blood. 123:625–631. 2014.
View Article : Google Scholar :
|
5
|
Griendling KK, Sorescu D, Lassègue B and
Ushio-Fukai M: Modulation of protein kinase activity and gene
expression by reactive oxygen species and their role in vascular
physiology and pathophysiology. Arterioscler Thromb Vasc Biol.
20:2175–2183. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mei S, Gu H, Ward A, Yang X, Guo H, He K,
Liu Z and Cao W: p38 mitogen-activated protein kinase (MAPK)
promotes cholesterol ester accumulation in macrophages through
inhibition of macroautophagy. J Biol Chem. 287:11761–11768. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Abe J and Woo CH: NADPH oxidase in
vascular injury: A new insight about its regulation and role in T
cells. Circ Res. 104:147–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Drummond GR, Selemidis S, Griendling KK
and Sobey CG: Combating oxidative stress in vascular disease: NADPH
oxidases as therapeutic targets. Nat Rev Drug Discov. 10:453–471.
2011. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Pirillo A, Norata GD and Catapano AL:
LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm.
2013:1527862013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gao S and Geng YJ: LOX-1: A male
hormone-regulated scavenger receptor for atherosclerosis. Vascul
Pharmacol. 59:138–143. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mehta JL, Sanada N, Hu CP, Chen J,
Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage K, et
al: Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice
fed high cholesterol diet. Circ Res. 100:1634–1642. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ding Z, Mizeracki AM, Hu C and Mehta JL:
LOX-1 deletion and macrophage trafficking in atherosclerosis.
Biochem Biophys Res Commun. 440:210–214. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dai Y, Mercanti F, Dai D, Wang X, Ding Z,
Pothineni NV and Mehta JL: LOX-1, a bridge between GLP-1R and
mitochondrial ROS generation in human vascular smooth muscle cells.
Biochem Biophys Res Commun. 437:62–66. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Appay V, Bosio A, Lokan S, Wiencek Y,
Biervert C, Küsters D, Devevre E, Speiser D, Romero P, Rufer N and
Leyvraz S: Sensitive gene expression profiling of human T cell
subsets reveals parallel post-thymic differentiation for CD4+ and
CD8+ lineages. J Immunol. 179:7406–7414. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tinkel J, Hassanain H and Khouri SJ:
Cardiovascular antioxidant therapy: A review of supplements,
pharmacotherapies and mechanisms. Cardiol Rev. 20:77–83.
2012.PubMed/NCBI
|
17
|
Prasad K and Kalra J: Experimental
atherosclerosis and oxygen free radicals. Angiology. 40:835–843.
1989. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ding Z, Liu S, Wang X, Khaidakov M, Dai Y
and Mehta JL: Oxidant stress in mitochondrial DNA damage, autophagy
and inflammation in atherosclerosis. Sci Rep. 3:10772013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Fukai T and Ushio-Fukai M: Superoxide
dismutases: Role in redox signaling, vascular function and
diseases. Antioxid Redox Signal. 15:1583–1606. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao P, Wang XM, Qian DH, Qin ZX, Jin J, Xu
Q, Yuan QY, Li XJ and Si LY: Induction of oxidative stress by
oxidized LDL via meprinα-activated epidermal growth factor receptor
in macrophages. Cardiovasc Res. 97:533–543. 2013. View Article : Google Scholar
|
21
|
Akhmedov A, Rozenberg I, Paneni F, Camici
GG, Shi Y, Doerries C, Sledzinska A, Mocharla P, Breitenstein A,
Lohmann C, et al: Endothelial overexpression of LOX-1 increases
plaque formation and promotes atherosclerosis in vivo. Eur Heart J.
35:2839–2848. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ishiyama J, Taguchi R, Yamamoto A and
Murakami K: Palmitic acid enhances lectin-like oxidized LDL
receptor (LOX-1) expression and promotes uptake of oxidized LDL in
macrophage cells. Atherosclerosis. 209:118–124. 2010. View Article : Google Scholar
|
23
|
Thum T and Borlak J: LOX-1 receptor
blockade abrogates oxLDL-induced oxidative DNA damage and prevents
activation of the transcriptional repressor Oct-1 in human coronary
arterial endothelium. J Biol Chem. 283:19456–19464. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng B, Wu X, Sun S, Wu Q, Mei C, Xu Q,
Wu J and He P: MAPK-PPARα/γ signal transduction pathways are
involved in Chlamydia pneumoniae-induced macrophage-derived foam
cell formation. Microb Pathog. 69–70:1–8. 2014. View Article : Google Scholar
|
25
|
Tumurkhuu G, Koide N, Dagvadorj J, Hassan
F, Islam S, Naiki Y, Mori I, Yoshida T and Yokochi T: MnTBAP, a
synthetic metalloporphyrin, inhibits production of tumor necrosis
factor-alpha in lipopolysaccharide-stimulated RAW 264.7 macrophages
cells via inhibiting oxidative stress-mediating p38 and SAPK/JNK
signaling. FEMS Immunol Med Microbiol. 49:304–311. 2007. View Article : Google Scholar : PubMed/NCBI
|