1
|
Daugherty A: Mouse models of
atherosclerosis. Am J Med Sci. 323:3–10. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kapourchali FR, Surendiran G, Chen L, Uitz
E, Bahadori B and Moghadasian MH: Animal models of atherosclerosis.
World J Clin Cases. 2:126–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zaragoza C, Gomez-Guerrero C,
Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C,
Mas S, Ortiz A and Egido J: Animal models of cardiovascular
diseases. J Biomed Biotechnol. 2011:4978412011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Knowles JW and Maeda N: Genetic modifiers
of atherosclerosis in mice. Arterioscler Thromb Vasc Biol.
20:2336–2345. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Plump AS, Smith JD, Hayek T, Aalto-Setälä
K, Walsh A, Verstuyft JG, Rubin EM and Breslow JL: Severe
hypercholes-terolemia and atherosclerosis in apolipoprotein
E-deficient mice created by homologous recombination in ES cells.
Cell. 71:343–353. 1992. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zadelaar S, Kleemann R, Verschuren L, de
Vries-Van der Weij J, van der Hoorn J, Princen HM and Kooistra T:
Mouse models for atherosclerosis and pharmaceutical modifiers.
Arterioscler Thromb Vasc Biol. 27:1706–1721. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Daugherty A, Lu H, Howatt DA and Rateri
DL: Modes of defining atherosclerosis in mouse models: Relative
merits and evolving standards. Methods Mol Biol. 573:1–15. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Nakashima Y, Plump AS, Raines EW, Breslow
JL and Ross R: ApoE-deficient mice develop lesions of all phases of
athero sclerosis throughout the arterial tree. Arterioscler Thromb.
14:133–140. 1994. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mani S, Li H, Untereiner A, Wu L, Yang G,
Austin RC, Dickhout JG, Lhoták Š, Meng QH and Wang R: Decreased
endogenous production of hydrogen sulfide accelerates
atherosclerosis. Circulation. 127:2523–2534. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D,
Tang X, Ren Y, Tang C and Du J: Role of hydrogen sulfide in the
development of athero-sclerotic lesions in apolipoprotein E
knockout mice. Arterioscler Thromb Vasc Biol. 29:173–179. 2009.
View Article : Google Scholar
|
11
|
Paigen B, Morrow A, Holmes PA, Mitchell D
and Williams RA: Quantitative assessment of atherosclerotic lesions
in mice. Atherosclerosis. 68:231–240. 1987. View Article : Google Scholar : PubMed/NCBI
|
12
|
Purcell-Huynh DA, Farese RV Jr, Johnson
DF, Flynn LM, Pierotti V, Newland DL, Linton MF, Sanan DA and Young
SG: Transgenic mice expressing high levels of human apolipoprotein
B develop severe atherosclerotic lesions in response to a high-fat
diet. J Clin Invest. 95:2246–2257. 1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Véniant MM, Pierotti V, Newland D, Cham
CM, Sanan DA, Walzem RL and Young SG: Susceptibility to
atherosclerosis in mice expressing exclusively apolipoprotein B48
or apolipoprotein B100. J Clin Invest. 100:180–188. 1997.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tangirala RK, Rubin EM and Palinski W:
Quantitation of atheroscleros in murine models: Correlation between
lesions in the aortic origin and in the entire aorta and
differences in the extent of lesions between sexes in LDL
receptor-deficient and apolipoprotein E-deficient mice. J Lipid
Res. 36:2320–2328. 1995.PubMed/NCBI
|
15
|
Guide for the Care and Use of Laboratory
Animals. US National Institutes of Health; Bethesda: 2011
|
16
|
Chen Y, Zhao S, Huang B, Wang Y, Li Y,
Waqar AB, Liu R, Bai L, Fan J and Liu E: Probucol and cilostazol
exert a combinatorial anti-atherogenic effect in cholesterol-fed
rabbits. Thromb Res. 132:565–571. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ford A, Al-Magableh M, Gaspari TA and Hart
JL: Chronic NaHS treatment is vasoprotective in high-fat-fed
ApoE(−/−) mice. Int J Vasc Med. 2013:9159832013.
|
18
|
Zhang C, Zheng H, Yu Q, Yang P, Li Y,
Cheng F, Fan J and Liu E: A practical method for quantifying
atherosclerotic lesions in rabbits. J Comp Pathol. 142:122–128.
2010. View Article : Google Scholar
|
19
|
Yu Q, Li Y, Wang Y, Zhao S, Yang P, Chen
Y, Fan J and Liu E: C-reactive protein levels are associated with
the progression of atherosclerotic lesions in rabbits. Histol
Histopathol. 27:529–535. 2012.PubMed/NCBI
|
20
|
de Boer RA, Voors AA, Muntendam P, van
Gilst WH and van Veldhuisen DJ: Galectin-3: A novel mediator of
heart failure development and progression. Eur J Heart Fail.
11:811–817. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu E, Kitajima S, Higaki Y, Morimoto M,
Sun H, Watanabe T, Yamada N and Fan J: High lipoprotein lipase
activity increases insulin sensitivity in transgenic rabbits.
Metabolism. 54:132–138. 2005. View Article : Google Scholar
|
22
|
Meir KS and Leitersdorf E: Atherosclerosis
in the apolipo-protein-E-deficient mouse: A decade of progress.
Arterioscler Thromb Vasc Biol. 24:1006–1014. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Reddick RL, Zhang SH and Maeda N:
Atherosclerosis in mice lacking apo E. Evaluation of lesional
development and progression. Arterioscler Thromb. 14:141–147. 1994.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tupin E, Nicoletti A, Elhage R, Rudling M,
Ljunggren HG, Hansson GK and Berne GP: CD1d-dependent activation of
NKT cells aggravates atherosclerosis. J Exp Med. 199:417–422. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ni M, Zhang M, Ding SF, Chen WQ and Zhang
Y: Micro-ultrasound imaging assessment of carotid plaque
characteristics inapolipoprotein-E knockout mice. Atherosclerosis.
197:64–71. 2008. View Article : Google Scholar
|
26
|
McAteer MA, Schneider JE, Clarke K,
Neubauer S, Channon KM and Choudhury RP: Quantification and 3D
reconstruction of atherosclerotic plaque components in
apolipoprotein E knockout mice using ex vivo high-resolution MRI.
Arterioscler Thromb Vasc Biol. 24:2384–2390. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wrobel TP, Mateuszuk L, Kostogrys RB,
Chlopicki S and Baranska M: Quantification of plaque area and
characterization of plaque biochemical composition with
atherosclerosis progression in ApoE/LDLR(-/-)
mice by FT-IR imaging. Analyst. 138:6645–6652. 2013. View Article : Google Scholar : PubMed/NCBI
|