1
|
Brown TA, Tkachuk AN, Shtengel G, Kopek
BG, Bogenhagen DF, Hess HF and Clayton DA: Superresolution
fluorescence imaging of mitochondrial nucleoids reveals thein
spatial range, limits and membrane interaction. Mol Cell Biol.
31:4994–5010. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bogenhagen DF: Mitochondrial DNA nucleoid
structure. Biochim Biophys Acta. 1819:914–920. 2012. View Article : Google Scholar
|
3
|
Ngo HB, Kaiser JT and Chan DC: The
mitochondrial transcription and packaging factor Tfam imposes a
U-turn on mitochondrial DNA. Nat Struct Mol Biol. 18:1290–1296.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Scarpulla RC: Transcriptional paradigms in
mammalian mitochondrial biogenesis and function. Physiol Rev.
88:611–638. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Falkenberg M, Larsson NG and Gustafsson
CM: DNA replication and transcription in mammalian mitochondria.
Annu Rev Biochem. 76:679–699. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Campbell CT, Kolesar JE and Kaufman BA:
Mitochondrial transcription factor A regulates mitochondrial
transcription initiation, DNA packaging and genome copy number.
Biochim Biophys Acta. 1819:921–929. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gauthier BR, Wiederkehr A, Baquié M, Dai
C, Powers AC, Kerr-Conte J, Pattou F, MacDonald RJ, Ferrer J and
Wollheim CB: PDX1 deficiency causes mitochondrial dysfunction and
defective insulin secretion through TFAM suppression. Cell Metab.
10:110–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shi CM, Xu GF, Yang L, Fu ZY, Chen L, Fu
HL, Shen YH, Zhu L, Ji CB and Guo XR: Overexpression of TFAM
protects 3T3-L1 adipocytes from NYGGF4 (PID1)
overexpression-induced insulin resistance and mitochondrial
dysfunction. Cell Biochem Biophys. 66:489–497. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kaguni LS: DNA polymerase gamma, the
mitochondrial replicase. Annu Rev Biochem. 73:293–320. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruhanen H, Borrie S, Szabadkai G,
Tyynismaa H, Jones AW, Kang D, Taanman JW and Yasukawa T:
Mitochondrial single-stranded DNA binding protein is required for
maintenance of mitochondrial DNA and 7S DNA but is not required for
mitochondrial nucleoid organisation. Biochim Biophys Acta.
1803:931–939. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Van Tuyle GC and Pavco PA: The rat liver
mitochondrial DNA-protein complex: Displaced single strands of
replicative intermediates are protein coated. J Cell Biol.
100:251–257. 1985. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hoke GD, Pavco PA, Ledwith BJ and Van
Tuyle GC: Structural and functional studies of the rat
mitochondrial single strand DNA binding protein P16. Arch Biochem
Biophys. 282:116–124. 1990. View Article : Google Scholar : PubMed/NCBI
|
13
|
Korhonen JA, Gaspari M and Falkenberg M:
TWINKLE Has 5′->3′ DNA helicase activity and is specifically
stimulated by mitochondrial single-stranded DNA-binding protein. J
Biol Chem. 278:48627–48632. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Milenkovic D, Matic S, Kühl I, Ruzzenente
B, Freyer C, Jemt E, Park CB, Falkenberg M and Larsson NG: TWINKLE
is an essential mitochondrial helicase required for synthesis of
nascent D-loop strands and complete mtDNA replication. Hum Mol
Genet. 22:1983–1993. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Blomain ES and McMahon SB: Dynamic
regulation of mitochondrial transcription as a mechanism of
cellular adaptation. Biochim Biophys Acta. 1819:1075–1079. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Asin-Cayuela J and Gustafsson CM:
Mitochondrial transcription and its regulation in mammalian cells.
Trends Biochem Sci. 32:111–117. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tauber J, Dlasková A, Santorová J,
Smolková K, Alán L, Spaček T, Plecitá-Hlavatá L, Jabůrek M and
Ježek P: Distribution of mitochondrial nucleoids upon mitochondrial
network fragmentation and network reintegration in HEPG2 cells. Int
J Biochem Cell Biol. 45:593–603. 2013. View Article : Google Scholar
|
18
|
Li Z, Shen J, Chen Y, Pan J, Zeng H, Fang
H, Ye Z, Zeng C, Zhang R and Cai D: Mitochondrial genome sequencing
of chondrocytes in osteoarthritis by human mitochondria RT2
Profiler™ PCR array. Mol Med Rep. 6:39–44. 2012.PubMed/NCBI
|
19
|
Piao L, Han Y and Li D: Correlation study
on adiponectin gene SNP45 and long-term oxidative stress in
patients with diabetes and carotid atherosclerosis. Exp Ther Med.
8:707–712. 2014.PubMed/NCBI
|
20
|
Grzybowska-Szatkowska L and Slaska B:
Mitochondrial DNA and carcinogenesis (review). Mol Med Rep.
6:923–930. 2012.PubMed/NCBI
|
21
|
Li WH and Zheng G: Photoactivatable
fluorophores and techniques for biological imaging applications.
Photochem Photobiol Sci. 11:460–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hedde PN and Nienhaus GU: Super-resolution
localization microscopy with photoactivatable fluorescent marker
proteins. Protoplasma. 251:349–362. 2014. View Article : Google Scholar
|
23
|
Nienhaus GU, Nienhaus K, Hölzle A,
Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C,
Vallone B, et al: Photoconvertible fluorescent protein EosFP:
Biophysical properties and cell biology applications. Photochem
Photobiol. 82:351–358. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mlodzianoski MJ, Schreiner JM, Callahan
SP, Smolková K, Dlasková A, Santorová J, Ježek P and Bewersdorf J:
Sample drift correction in 3D fluorescence photoactivation
localization microscopy. Opt Express. 19:15009–15019. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Alán L, Špaček T, Zelenka J, Tauber J,
Berková Z, Zacharovová K, Saudek F and Ježek P: Assessment of
mitochondrial DNA as an indicator of islet quality: An example in
Goto Kakizaki rats. Transplant Proc. 43:3281–3284. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Korr H, Thorsten Rohde H, Benders J,
Dafotakis M, Grolms N and Schmitz C: Neuron loss during early
adulthood following prenatal low-dose X-irradiation in the mouse
brain. Int J Radiat Biol. 77:567–580. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Arakaki N, Nishihama T, Kohda A, Owaki H,
Kuramoto Y, Abe R, Kita T, Suenaga M, Himeda T, Kuwajima M, et al:
Regulation of mitochondrial morphology and cell survival by
Mitogenin I and mitochondrial single-stranded DNA binding protein.
Biochim Biophys Acta. 1760:1364–1372. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Iborra FJ, Kimura H and Cook PR: The
functional organization of mitochondrial genomes in human cells.
BMC Biol. 2:92004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ban-Ishihara R, Ishihara T, Sasaki N,
Mihara K and Ishihara N: Dynamics of nucleoid structure regulated
by mitochondrial fission contributes to cristae reformation and
release of cytochrome c. Proc Natl Acad Sci USA. 110:11863–11868.
2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang C, Curth U, Urbanke C and Kang C:
Crystal structure of human mitochondrial single-stranded DNA
binding protein at 2.4 A resolution. Nat Struct Biol. 4:153–157.
1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Antony E, Weiland E, Yuan Q, Manhart CM,
Nguyen B, Kozlov AG, McHenry CS and Lohman TM: Multiple C-terminal
tails within a single E. coli SSB homotetramer coordinate DNA
replication and repair. J Mol Biol. 425:4802–4819. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rajala N, Gerhold JM, Martinsson P, Klymov
A and Spelbrink JN: Replication factors transiently associate with
mtDNA at the mitochondrial inner membrane to facilitate
replication. Nucleic Acids Res. 42:952–967. 2014. View Article : Google Scholar :
|