Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review)
- Authors:
- Xiuting He
- Jie Li
- Jing Wu
- Manli Zhang
- Pujun Gao
-
Affiliations: Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: September 10, 2015 https://doi.org/10.3892/mmr.2015.4312
- Pages: 6405-6414
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gerlich WH: Medical virology of hepatitis B: How it began and where we are now. Virol J. 10:2392013. View Article : Google Scholar : PubMed/NCBI | |
Zoulim F: Hepatitis B virus resistance to antiviral drugs: Where are we going? Liver Int. 31(Suppl 1): 111–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wursthorn K, Lutgehetmann M, Dandri M, Volz T, Buggisch P, Zollner B, Longerich T, Schirmacher P, Metzler F, Zankel M, et al: Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B. Hepatology. 44:675–684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, et al: Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 343:1221–1228. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wedekind JE, Dance GS, Sowden MP and Smith HC: Messenger RNA editing in mammals: New members of the APOBEC family seeking roles in the family business. Trends Genet. 19:207–216. 2003. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Du Y, Zhang Q, Han X and Cao G: Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett. 343:161–171. 2014. View Article : Google Scholar | |
Dickerson SK, Market E, Besmer E and Papavasiliou FN: AID mediates hypermutation by deaminating single stranded DNA. J Exp Med. 197:1291–1296. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rogozin IB, Basu MK, Jordan IK, Pavlov YI and Koonin EV: APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle. 4:1281–1285. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liao W, Hong SH, Chan BH, Rudolph FB, Clark SC and Chan L: APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun. 260:398–404. 1999. View Article : Google Scholar : PubMed/NCBI | |
Teng B, Burant CF and Davidson NO: Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science. 260:1816–1819. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J and Navaratnam N: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 79:285–296. 2002. View Article : Google Scholar : PubMed/NCBI | |
Conticello SG, Thomas CJ, Petersen-Mahrt SK and Neuberger MS: Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol. 22:367–377. 2005. View Article : Google Scholar | |
Vieira VC and Soares MA: The role of cytidine deaminases on innate immune responses against human viral infections. Biomed Res Int. 2013:6830952013. View Article : Google Scholar : PubMed/NCBI | |
Severi F, Chicca A and Conticello SG: Analysis of reptilian APOBEC1 suggests that RNA editing may not be its ancestral function. Mol Biol Evol. 28:1125–1129. 2011. View Article : Google Scholar | |
Rösler C, Köck J, Kann M, Malim MH, Blum HE, Baumert TF and von Weizsäcker F: APOBEC-mediated interference with hepadnavirus production. Hepatology. 42:301–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
Suspène R, Guétard D, Henry M, Sommer P, Wain-Hobson S and Vartanian JP: Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA. 102:8321–8326. 2005. View Article : Google Scholar : PubMed/NCBI | |
Henry M, Guétard D, Suspène R, Rusniok C, Wain-Hobson S and Vartanian JP: Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3 G. PLoS One. 4:e42772009. View Article : Google Scholar | |
Baumert TF, Rösler C, Malim MH and von Weizsäcker F: Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology. 46:682–689. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez MC, Suspène R, Henry M, Guétard D, Wain-Hobson S and Vartanian JP: Human APOBEC1 cytidine deaminase edits HBV DNA. Retrovirology. 6:962009. View Article : Google Scholar : PubMed/NCBI | |
Köck J and Blum HE: Hypermutation of hepatitis B virus genomes by APOBEC3 G, APOBEC3C and APOBEC3H. J Gen Virol. 89:1184–1191. 2008. View Article : Google Scholar | |
Vartanian JP, Henry M, Marchio A, Suspène R, Aynaud MM, Guétard D, Cervantes-Gonzalez M, Battiston C, Mazzaferro V, Pineau P, et al: Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog. 6:e10009282010. View Article : Google Scholar : PubMed/NCBI | |
Li D, Liu J, Kang F, Guan W, Gao X, Wang Y and Sun D: Core-APOBEC3C chimerical protein inhibits hepatitis B virus replication. J Biochem. 150:371–374. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang X, Tian C, Wang T, Sarkis PT, Fang Y, Zheng S, Yu XF and Xu R: Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression. Cell Microbiol. 10:112–121. 2008. | |
Bonvin M and Greeve J: Effects of point mutations in the cytidine deaminase domains of APOBEC3B on replication and hypermu-tation of hepatitis B virus in vitro. J Gen Virol. 88:3270–3274. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jost S, Turelli P, Mangeat B, Protzer U and Trono D: Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J Virol. 81:10588–10596. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bonvin M, Achermann F, Greeve I, Stroka D, Keogh A, Inderbitzin D, Candinas D, Sommer P, Wain-Hobson S, Vartanian JP and Greeve J: Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology. 43:1364–1374. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DH, Gummuluru S and Hu J: Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol. 81:4465–4472. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Cai J, Chang J, Yu D, Wu C, Yan T, Zhai K, Bi X, Zhao H, Xu J, et al: Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. Hum Mol Genet. 22:1262–1269. 2013. View Article : Google Scholar | |
Bransteitter R, Pham P, Scharff MD and Goodman MF: Activation-induced cytidine deaminase deaminates deoxy-cytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA. 100:4102–4107. 2003. View Article : Google Scholar | |
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO and Honjo T: Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 274:18470–18476. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vonica A, Rosa A, Arduini BL and Brivanlou AH: APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis. Dev Biol. 350:13–23. 2011. View Article : Google Scholar : | |
Sato Y, Probst HC, Tatsumi R, Ikeuchi Y, Neuberger MS and Rada C: Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass and myopathy. J Biol Chem. 285:7111–7118. 2010. View Article : Google Scholar : | |
Etard C, Roostalu U and Strahle U: Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J Cell Biol. 189:527–539. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM and Malim MH: Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol. 83:9474–9485. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Marusawa H, Seno H, Matsumoto Y, Ueda Y, Kodama Y, Endo Y, Yamauchi J, Matsumoto T, Takaori-Kondo A, et al: Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun. 341:314–319. 2006. View Article : Google Scholar : PubMed/NCBI | |
Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL and Harris RS: Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: Implications for HIV-1 restriction. Nucleic Acids Res. 38:4274–4284. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Zhang X, Zhang W, Fang Y, Zheng S and Yu XF: Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma. Hepatology. 46:1810–1820. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stenglein MD, Burns MB, Li M, Lengyel J and Harris RS: APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. 17:222–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng G, Lei KJ, Jin W, Greenwell-Wild T and Wahl SM: Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med. 203:41–46. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang FX, Huang J and Zhang H, Ma X and Zhang H: APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. J Gen Virol. 89:722–730. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stopak KS, Chiu YL, Kropp J, Grant RM and Greene WC: Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages and dendritic cells. J Biol Chem. 282:3539–3546. 2007. View Article : Google Scholar | |
Argyris EG, Acheampong E, Wang F, Huang J, Chen K, Mukhtar M and Zhang H: The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology. 367:440–451. 2007. View Article : Google Scholar : PubMed/NCBI | |
Endo Y, Marusawa H, Kinoshita K, Morisawa T, Sakurai T, Okazaki IM, Watashi K, Shimotohno K, Honjo T and Chiba T: Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene. 26:5587–5595. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto T, Marusawa H, Endo Y, Ueda Y, Matsumoto Y and Chiba T: Expression of APOBEC2 is transcriptionally regulated by NF-kappaB in human hepatocytes. FEBS Lett. 580:731–735. 2006. View Article : Google Scholar : PubMed/NCBI | |
Endo Y, Marusawa H, Kou T, Nakase H, Fujii S, Fujimori T, Kinoshita K, Honjo T and Chiba T: Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology. 135:889–898. 898 e1–e3. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kou T, Marusawa H, Kinoshita K, Endo Y, Okazaki IM, Ueda Y, Kodama Y, Haga H, Ikai I and Chiba T: Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int J Cancer. 120:469–476. 2007. View Article : Google Scholar | |
Smith HC, Bennett RP, Kizilyer A, McDougall WM and Prohaska KM: Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol. 23:258–268. 2012. View Article : Google Scholar | |
Backus JW, Schock D and Smith HC: Only cytidines 5′ of the apolipoprotein B mRNA mooring sequence are edited. Biochim Biophys Acta. 1219:1–14. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Sowden MP and Smith HC: Induction of cytidine to uridine editing on cytoplasmic apolipoprotein B mRNA by overexpressing APOBEC-1. J Biol Chem. 275:22663–22669. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lau PP, Xiong WJ, Zhu HJ, Chen SH and Chan L: Apolipoprotein B mRNA editing is an intranuclear event that occurs posttranscriptionally coincident with splicing and polyadenylation. J Biol Chem. 266:20550–20554. 1991.PubMed/NCBI | |
Sowden MP and Smith HC: Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization. Biochem J. 359:697–705. 2001. View Article : Google Scholar : PubMed/NCBI | |
Papavasiliou FN and Schatz DG: Somatic hypermutation of immunoglobulin genes: Merging mechanisms for genetic diversity. Cell. 109(Suppl): S35–S44. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lada AG, Krick CF, Kozmin SG, Mayorov VI, Karpova TS, Rogozin IB and Pavlov YI: Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). 76:131–146. 2011. View Article : Google Scholar | |
Stavnezer J: Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol. 32:194–201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Patenaude AM and Di Noia JM: The mechanisms regulating the subcellular localization of AID. Nucleus. 1:325–331. 2010. View Article : Google Scholar | |
Bennett RP, Presnyak V, Wedekind JE and Smith HC: Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem. 283:7320–7327. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smith HC: APOBEC3G: A double agent in defense. Trends Biochem Sci. 36:239–244. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W and Greene WC: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature. 435:108–114. 2005. View Article : Google Scholar : PubMed/NCBI | |
McDougall WM and Smith HC: Direct evidence that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun. 412:612–617. 2011. View Article : Google Scholar : PubMed/NCBI | |
Soros VB, Yonemoto W and Greene WC: Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA and subsequently activated by RNase H. PLoS Pathog. 3:e152007. View Article : Google Scholar | |
Wang X, Dolan PT, Dang Y and Zheng YH: Biochemical differentiation of APOBEC3F and APOBEC3G proteins associated with HIV-1 life cycle. J Biol Chem. 282:1585–1594. 2007. View Article : Google Scholar : | |
Niewiadomska AM, Tian C, Tan L, Wang T, Sarkis PT and Yu XF: Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J Virol. 81:9577–9583. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Sarkis PT, Wang T, Tian C and Yu XF: Sole copy of Z2-type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV-1. FASEB J. 23:279–287. 2009. View Article : Google Scholar : | |
Gerelsaikhan T, Tavis JE and Bruss V: Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol. 70:4269–4274. 1996.PubMed/NCBI | |
Lewin SR, Ribeiro RM, Walters T, Lau GK, Bowden S, Locarnini S and Perelson AS: Analysis of hepatitis B viral load decline under potent therapy: Complex decay profiles observed. Hepatology. 34:1012–1020. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC and McDade H: Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA. 93:4398–4402. 1996. View Article : Google Scholar : PubMed/NCBI | |
Tran A, Kremsdorf D, Capel F, Housset C, Dauguet C, Petit MA and Brechot C: Emergence of and takeover by hepatitis B virus (HBV) with rearrangements in the pre-S/S and pre-C/C genes during chronic HBV infection. J Virol. 65:3566–3574. 1991.PubMed/NCBI | |
Beggel B, Münk C, Däumer M, Hauck K, Häussinger D, Lengauer T and Erhardt A: Full genome ultra-deep pyrosequencing associates G-to-A hypermutation of the hepatitis B virus genome with the natural progression of hepatitis B. J Viral Hepat. 20:882–889. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noguchi C, Ishino H, Tsuge M, Fujimoto Y, Imamura M, Takahashi S and Chayama K: G to A hypermutation of hepatitis B virus. Hepatology. 41:626–633. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hannoun C, Horal P and Lindh M: Long-term mutation rates in the hepatitis B virus genome. J Gen Virol. 81:75–83. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mangeat B, Turelli P, Caron G, Friedli M, Perrin L and Trono D: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 424:99–103. 2003. View Article : Google Scholar : PubMed/NCBI | |
Har ris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS and Malim MH: DNA deamination mediates innate immunity to retroviral infection. Cell. 113:803–809. 2003. View Article : Google Scholar | |
Schrofelbauer B, Yu Q, Zeitlin SG and Landau NR: Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol. 79:10978–10987. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kaiser SM and Emerman M: Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol. 80:875–882. 2006. View Article : Google Scholar : | |
Turelli P, Mangeat B, Jost S, Vianin S and Trono D: Inhibition of hepatitis B virus replication by APOBEC3G. Science. 303:18292004. View Article : Google Scholar : PubMed/NCBI | |
Lei YC, Tian YJ, Ding HH, Wang BJ, Yang Y, Hao YH, Zhao XP, Lu MJ, Gong FL and Yang DL: N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication. World J Gastroenterol. 12:7488–7496. 2006.PubMed/NCBI | |
Liang G, Kitamura K, Wang Z, Liu G, Chowdhury S, Fu W, Koura M, Wakae K, Honjo T and Muramatsu M: RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci USA. 110:2246–2251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nassal M: The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol. 66:4107–4116. 1992.PubMed/NCBI | |
Schlicht HJ, Bartenschlager R and Schaller H: The duck hepatitis B virus core protein contains a highly phosphorylated C terminus that is essential for replication but not for RNA packaging. J Virol. 63:2995–3000. 1989.PubMed/NCBI | |
Nguyen DH and Hu J: Reverse transcriptase- and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol. 82:6852–6861. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Wang X, Lou G, Peng G, Li J, Zhu H, Chen F, Li S, Liu D, Chen Z and Yang Z: APOBEC3G directly binds Hepatitis B virus core protein in cell and cell free systems. Virus Res. 151:213–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, et al: Fine-scale structural variation of the human genome. Nat Genet. 37:727–732. 2005. View Article : Google Scholar : PubMed/NCBI | |
McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, et al: Common deletion polymorphisms in the human genome. Nat Genet. 38:86–92. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kidd JM, Newman TL, Tuzun E, Kaul R and Eichler EE: Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 3:e632007. View Article : Google Scholar : PubMed/NCBI | |
Abe H, Ochi H, Maekawa T, Hatakeyama T, Tsuge M, Kitamura S, Kimura T, Miki D, Mitsui F, Hiraga N, et al: Effects of structural variations of APOBEC3A and APOBEC3B genes in chronic hepatitis B virus infection. Hepatol Res. 39:1159–1168. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ezzikouri S, Kitab B, Rebbani K, Marchio A, Wain-Hobson S, Dejean A, Vartanian JP, Pineau P and Benjelloun S: Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan population. J Viral Hepat. 20:678–686. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Abudu A, Son S, Dang Y, Venta PJ and Zheng YH: Analysis of human APOBEC3H haplotypes and anti-human immunodeficiency virus type 1 activity. J Virol. 85:3142–3152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harari A, Ooms M, Mulder LC and Simon V: Polymorphisms and splice variants influence the antiretroviral activity of human APOBEC3H. J Virol. 83:295–303. 2009. View Article : Google Scholar : | |
Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, et al: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 45:970–976. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al: Signatures of mutational processes in human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burns MB, Temiz NA and Harris RS: Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 45:977–983. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC III, Nussenzweig MC and Dalla-Favera R: AID is required for germinal center-derived lymphomagenesis. Nat Genet. 40:108–112. 2008. View Article : Google Scholar | |
Chiba T and Marusawa H: A novel mechanism for inflammation-associated carcinogenesis; an important role of activation-induced cytidine deaminase (AID) in mutation induction. J Mol Med (Berl). 87:1023–1027. 2009. View Article : Google Scholar | |
Takai A, Toyoshima T, Uemura M, Kitawaki Y, Marusawa H, Hiai H, Yamada S, Okazaki IM, Honjo T, Chiba T and Kinoshita K: A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene. 28:469–478. 2009. View Article : Google Scholar | |
Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S, Taylor JM and Innerarity TL: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci USA. 92:8483–8487. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka S, Poksay KS, Arnold KS and Innerarity TL: A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev. 11:321–333. 1997. View Article : Google Scholar : PubMed/NCBI | |
Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y, Takai A and Chiba T: Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer. 130:1294–1301. 2012. View Article : Google Scholar | |
Landry S, Narvaiza I, Linfesty DC and Weitzman MD: APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep. 12:444–450. 2011. View Article : Google Scholar : PubMed/NCBI |