1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeSantis C, Ma J, Bryan L and Jemal A:
Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014.
View Article : Google Scholar
|
3
|
Clark O, Botrel TE, Paladini L and
Ferreira MB: Targeted therapy in triple-negative metastatic breast
cancer: A systematic review and meta-analysis. Core Evid. 9:1–11.
2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Murphy IG, Dillon MF, Doherty AO,
McDermott EW, Kelly G, O'Higgins N and Hill AD: Analysis of
patients with false negative mammography and symptomatic breast
carcinoma. J Surg Oncol. 96:457–463. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fearnley IM, Carroll J, Shannon RJ,
Runswick MJ, Walker JE and Hirst J: GRIM-19, a cell death
regulatory gene product, is a subunit of bovine mitochondrial NADH:
Ubiquinone oxidore-ductase (complex I). J Biol Chem.
276:38345–38348. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang G, Lu H, Hao A, Ng DC, Ponniah S,
Guo K, Lufei C, Zeng Q and Cao X: GRIM-19, a cell death regulatory
protein, is essential for assembly and function of mitochondrial
complex I. Mol Cell Biol. 24:8447–8456. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Angell JE, Lindner DJ, Shapiro PS, Hofmann
ER and Kalvakolanu DV: Identification of GRIM-19, a novel cell
death-regulatory gene induced by the interferon-beta and retinoic
acid combination, using a genetic approach. J Biol Chem.
275:33416–33426. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nallar SC, Kalakonda S, Lindner DJ, Lorenz
RR, Lamarre E, Weihua X and Kalvakolanu DV: Tumor-derived mutations
in the gene associated with retinoid interferon-induced mortality
(GRIM-19) disrupt its anti-signal transducer and activator of
transcription 3 (STAT3) activity and promote oncogenesis. J Biol
Chem. 288:7930–7941. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu Y, Fukuyama S, Yoshida R, Kobayashi T,
Saeki K, Shiraishi H, Yoshimura A and Takaesu G: Loss of SOCS3 gene
expression converts STAT3 function from anti-apoptotic to
pro-apoptotic. J Biol Chem. 281:36683–36690. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang Y, Yang M, Yang H and Zeng Z:
Upregulation of the GRIM-19 gene suppresses invasion and metastasis
of human gastric cancer SGC-7901 cell line. Exp Cell Res.
316:2061–2070. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang G, Chen Y, Lu H and Cao X: Coupling
mitochondrial respiratory chain to cell death: An essential role of
mitochondrial complex I in the interferon-beta and retinoic
acid-induced cancer cell death. Cell Death Differ. 14:327–337.
2007. View Article : Google Scholar
|
12
|
Hao H, Liu J, Liu G, Guan D, Yang Y, Zhang
X, Cao X and Liu Q: Depletion of GRIM-19 accelerates hepatocellular
carcinoma invasion via inducing EMT and loss of contact inhibition.
J Cell Physiol. 227:1212–1219. 2012. View Article : Google Scholar
|
13
|
Zhou T, Chao L, Rong G, Wang C, Ma R and
Wang X: Down-regulation of GRIM-19 is associated with STAT3
over-expression in breast carcinomas. Hum Pathol. 44:1773–1779.
2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang W, Du Y, Jiang T, Geng W, Yuan J and
Zhang D: Upregulation of GRIM-19 inhibits the growth and invasion
of human breast cancer cells. Mol Med Rep. 12:2919–2925.
2015.PubMed/NCBI
|
15
|
Hemminki A, Markie D, Tomlinson I,
Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M,
Höglund P, et al: A serine/threonine kinase gene defective in
Peutz-Jeghers syndrome. Nature. 391:184–187. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Esteller M, Avizienyte E, Corn PG, Lothe
RA, Baylin SB, Aaltonen LA and Herman JG: Epigenetic inactivation
of LKB1 in primary tumors associated with the Peutz-Jeghers
syndrome. Oncogene. 19:164–168. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Andrade-Vieira R, Xu Z, Colp P and
Marignani PA: Loss of LKB1 expression reduces the latency of
ErbB2-mediated mammary gland tumorigenesis, promoting changes in
metabolic pathways. PLoS One. 8:e565672013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhuang Z, Wang K, Cheng X, Qu X, Jiang B,
Li Z, Luo J, Shao Z and Duan T: LKB1 inhibits breast cancer
partially through repressing the Hedgehog signaling pathway. PLoS
One. 8:e674312013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhuang ZG, Di GH, Shen ZZ, Ding J and Shao
ZM: Enhanced expression of LKB1 in breast cancer cells attenuates
angio-genesis, invasion and metastatic potential. Mol Cancer Res.
4:843–849. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Linher-Melville K and Singh G: The
transcriptional responsiveness of LKB1 to STAT-mediated signaling
is differentially modulated by prolactin in human breast cancer
cells. BMC cancer. 14:4152014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Korsse SE, Peppelenbosch MP and van Veelen
W: Targeting LKB1 signaling in cancer. Biochim Biophys Acta.
1835:194–210. 2013.PubMed/NCBI
|
22
|
Li L, Yu C, Ren J, Ye S, Ou W, Wang Y,
Yang W, Zhong G, Chen X, Shi H, et al: Synergistic effects of
eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on
lung cancer in vitro and in vivo. J Cancer Res Clin Oncol.
140:895–907. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Duivenvoorden WC, Beatty LK, Lhotak S,
Hill B, Mak I, Paulin G, Gallino D, Popovic S, Austin RC and
Pinthus JH: Underexpression of tumour suppressor LKB1 in clear cell
renal cell carcinoma is common and confers growth advantage in
vitro and in vivo. Br J Cancer. 108:327–333. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang GM, Ren ZX, Wang PS, Su C, Zhang WX,
Liu ZG, Zhang L, Zhao XJ and Chen G: Plasmid-based Stat3-specific
siRNA and GRIM-19 inhibit the growth of thyroid cancer cells in
vitro and in vivo. Oncol Rep. 32:573–580. 2014.PubMed/NCBI
|
25
|
Zhang L, Gao L, Li Y, Lin G, Shao Y, Ji K,
Yu H, Hu J, Kalvakolanu DV and Kopecko DJ: Effects of plasmid-based
Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell
growth. Clin Cancer Res. 14:559–568. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wen LJ, Gao LF, Jin CS, Zhang HJ, Ji K,
Yang JP, Zhao XJ, Wen MJ and Guan GF: Small interfering RNA
survivin and GRIM-19 co-expression salmonella plasmid inhibited the
growth of laryngeal cancer cells in vitro and in vivo. Int J Clin
Exp Pathol. 6:2071–2081. 2013.PubMed/NCBI
|
27
|
Li X, Li Y, Hu J, Wang B, Zhao L, Ji K,
Guo B, Yin D, Du Y, Kopecko DJ, et al: Plasmid-based E6-specific
siRNA and co-expression of wild-type p53 suppresses the growth of
cervical cancer in vitro and in vivo. Cancer Lett. 335:242–250.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu S, Zhang W, Liu K, Wang Y, Ji B and
Liu Y: Synergistic effects of co-expression plasmid based
ADAM10-specific siRNA and GRIM-19 on hepatocellular carcinoma in
vitro and in vivo. Oncol Rep. 32:2501–2510. 2014.PubMed/NCBI
|
29
|
Yadav L, Puri N, Rastogi V, Satpute P,
Ahmad R and Kaur G: Matrix metalloproteinases and cancer-roles in
threat and therapy. Asian Pac J Cancer Prev. 15:1085–1091. 2014.
View Article : Google Scholar
|
30
|
Abba M, Patil N and Allgayer H: MicroRNAs
in the regulation of MMPs and metastasis. Cancers (Basel).
6:625–645. 2014. View Article : Google Scholar
|
31
|
Hadler-Olsen E, Winberg JO and
Uhlin-Hansen L: Matrix metal-loproteinases in cancer: Their value
as diagnostic and prognostic markers and therapeutic targets.
Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang M, Teng XD, Guo XX, Li ZG, Han JG
and Yao L: Expression of tissue levels of matrix metalloproteinases
and their inhibitors in breast cancer. Breast. 22:330–334. 2013.
View Article : Google Scholar
|