1
|
van den Brandhof WE, Haks K, Schouten EG
and Verhoef P: The relation between plasma cysteine, plasma
homocysteine and coronary atherosclerosis. Atherosclerosis.
157:403–9. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ozkan Y, Ozkan E and Simşek B: Plasma
total homocysteine and cysteine levels as cardiovascular risk
factors in coronary heart disease. Int J Cardio. 82:269–277. 2002.
View Article : Google Scholar
|
3
|
Zhang D, Wen X, Wu W, Xu E, Zhang Y and
Cui W: Homocysteine-related hTERT DNA demethylation contributes to
shortened leukocyte telomere length in atherosclerosis.
Atherosclerosis. 231:173–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Horvath B, Szapary L, Debreceni L, Feher
G, Kenyeres P, Fulop A, Battyani I and Toth K: Effect of Sclerovit
on endothelial dysfunction, hemorheological parameters, platelet
aggregation, plasma concentration of homocysteine and progression
of atherosclerosis in patients with vascular diseases. Clin
Hemorheol Microcirc. 42:19–28. 2009.PubMed/NCBI
|
5
|
Liang Y, Yang X, Ma L, Cai X, Wang L, Yang
C, Li G, Zhang M, Sun W and Jiang Y: Homocysteine-mediated
cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1
monocyte-derived foam cells. Acta Biochim Biophys Sin (Shanghai).
45:220–228. 2013. View Article : Google Scholar
|
6
|
Jacob T, Hingorani A and Ascher E:
Evidence for telomerase activation in VSMCs exposed to
hyperglycemic and hyperhomocysteinemic conditions. Angiology.
60:562–568. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim Y, Han JH, Yun E, Jung SH, Lee JJ,
Song GY and Myung CS: Inhibitory effect of a novel naphthoquinone
derivative on proliferation of vascular smooth muscle cells through
suppression of platelet-derived growth factor receptor β tyrosine
kinase. Eur J Pharmacol. 733:81–89. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang J and Kontos CD: Inhibition of
vascular smooth muscle cell proliferation, migration and survival
by the tumor suppressor protein PTEN. Arterioscler Thromb Vasc
Biol. 22:745–751. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yonemitsu Y, Kaneda Y, Tanaka S, Nakashima
Y, Komori K, Sugimachi K and Sueishi K: Transfer of wild-type p53
gene effectively inhibits vascular smooth muscle cell proliferation
in vitro and in vivo. Circ Res. 82:147–156. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang C: MicroRNA and vascular smooth
muscle cell phenotype: New therapy for atherosclerosis? Genome Med.
1:852009. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Rangrez AY, Massy ZA, Metzinger-Le Meuth V
and Metzinger L: MiR-143 and miR-145: Molecular keys to switch the
phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet.
4:197–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dong S, Xiong W, Yuan J, Li J, Liu J and
Xu X: MiRNA-146a regulates the maturation and differentiation of
vascular smooth muscle cells by targeting NF-κB expression. Mol Med
Rep. 8:407–412. 2013.PubMed/NCBI
|
14
|
Boucher JM, Peterson SM, Urs S, Zhang C
and Liaw L: The miR-143/145 cluster is a novel transcriptional
target of Jagged-1/Notch signaling in vascular smooth muscle cells.
J Biol Chem. 286:28312–28321. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saetrom P, Snøve O Jr and Rossi JJ:
Epigenetics and microRNAs. Pediatr Res. 61:17R–23R. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hutnick LK, Golshani P, Namihira M, Xue Z,
Matynia A, Yang XW, Silva AJ, Schweizer FE and Fan G: DNA
hypomethylation restricted to the murine forebrain induces cortical
degeneration and impairs postnatal neuronal maturation. Hum Mol
Genet. 18:2875–2888. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu K, Wang YF, Cantemir C and Muller MT:
Endogenous assays of DNA methyltransferases: Evidence for
differential activities of DNMT1, DNMT2 and DNMT3 in mammalian
cells in vivo. Mol Cell Biol. 23:2709–2719. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Arand J, Spieler D, Karius T, Branco MR,
Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V and
Walter J: In vivo control of CpG and non-CpG DNA methylation by DNA
methyltransferases. PLoS Genet. 8:e10027502012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Krebs HA, Hems R and Tyler B: The
regulation of folate and methionine metabolism. Biochem J.
158:341–353. 1976. View Article : Google Scholar : PubMed/NCBI
|
20
|
Toyota M, Suzuki H, Sasaki Y, Maruyama R,
Imai K, Shinomura Y and Tokino T: Epigenetic silencing of
microRNA-34b/c and B-cell translocation gene 4 is associated with
CpG island methylation in colorectal cancer. Cancer Res.
68:4123–4132. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Veeck J and Esteller M: Breast cancer
epigenetics: From DNA methylation to microRNAs. J Mammary Gland
Biol Neoplasia. 15:5–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis
FR, Apa AG, de Rezende LM and Klumb CE: Deregulation of DNMT1,
DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution
for disease pathogenesis. Exp Mol Pathol. 98:200–207. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rao X, Huang X, Zhou Z and Lin X: An
improvement of the 2ˆ(-delta delta CT) method for quantitative
real-time polymerase chain reaction data analysis. Biostat
Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI
|
24
|
Yideng J, Jianzhong Z, Ying H, Juan S,
Jinge Z, Shenglan W, Xiaoqun H and Shuren W: Homocysteine-mediated
expression of SAHH, DNMTs, MBD2 and DNA hypomethylation potential
pathogenic mechanism in VSMCs. DNA Cell Biol. 26:603–611. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li
JJ, Röcken C, Ebert MP, Kwok TT and Sung JJ: MicroRNA-143 targets
DNA methyltransferases 3A in colorectal cancer. Br J Cancer.
101:699–706. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pawlak K, Mysliwiec M and Pawlak D:
Hyperhomocysteinemia and the presence of cardiovascular disease are
associated with kynurenic acid levels and carotid atherosclerosis
in patients undergoing continuous ambulatory peritoneal dialysis.
Thromb Res. 129:704–9. 2012. View Article : Google Scholar
|
27
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: Vascular smooth muscle cell in atherosclerosis. Acta Physiol
(Oxf). 214:33–50. 2015. View Article : Google Scholar
|
28
|
Choe N, Kwon JS, Kim JR, Eom GH, Kim Y,
Nam KI, Ahn Y, Kee HJ and Kook H: The microRNA miR-132 targets
Lrrfip1 to block vascular smooth muscle cell proliferation and
neointimal hyperplasia. Atherosclerosis. 229:348–355. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Davis-Dusenbery BN, Chan MC, Reno KE,
Weisman AS, Layne MD, Lagna G and Hata A: downregulation of
Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for
modulation of vascular smooth muscle cell phenotype by transforming
growth factor-beta and bone morphogenetic protein 4. J Biol Chem.
286:28097–28110. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao W, Zhao SP and Zhao YH:
MicroRNA-143/-145 in cardiovascular diseases. Biomed Res Int.
2015:5317402015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Isa Y, Mishima T, Tsuge H and Hayakawa T:
Increase in S-adenosylhomocysteine content and its effect on the
S-adenosylhomocysteine hydrolase activity under transient high
plasma homocysteine levels in rats. J Nutr Sci Vitaminol (Tokyo).
52:479–482. 2006. View Article : Google Scholar
|
32
|
Smith DE, Smulders YM, Blom HJ, Popp J,
Jessen F, Semmler A, Farkas M and Linnebank M: Determinants of the
essential one-carbon metabolism metabolites, homocysteine,
S-adenosylmethionine, S-adenosylhomocysteine and folate, in
cerebrospinal fluid. Clin Chem Lab Med. 50:1641–1647. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sandhu R, Rivenbark AG, Mackler RM, Livasy
CA and Coleman WB: Dysregulation of microRNA expression drives
aberrant DNA hypermethylation in basal-like breast cancer. Int J
Oncol. 44:563–572. 2014.
|
34
|
Ma S, Zhang H, Sun W, Gong H, Wang Y, Ma
C, Wang J, Cao C, Yang X, Tian J and Jiang Y: Hyperhomocysteinemia
induces cardiac injury by up-regulation of p53-dependent Noxa and
Bax expression through the p53 DNA methylation in ApoE(−/−) mice.
Acta Biochim Biophys Sin (Shanghai). 45:391–400. 2013. View Article : Google Scholar
|
35
|
Magdinier F, Billard LM, Wittmann G,
Frappart L, Benchaïb M, Lenoir GM, Guérin JF and Dante R: Regional
methylation of the 5′ end CpG island of BRCA1 is associated with
reduced gene expression in human somatic cells. FASEB J.
14:1585–1594. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
He M, Fan J, Jiang R, Tang WX and Wang ZW:
Expression of DNMTs and genomic DNA methylation in gastric signet
ring cell carcinoma. Mol Med Rep. 8:942–948. 2013.PubMed/NCBI
|
37
|
Holz-Schietinger C, Matje DM and Reich NO:
Mutations in DNA methyltransferase (DNMT3A) observed in acute
myeloid leukemia patients disrupt processive methylation. J Biol
Chem. 287:30941–30951. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu Z, Xiao Q, Zhao L, Ren J, Bai X, Sun M,
Wu H, Liu X, Song Z, Yan Y, et al: DNA methyltransferase 1/3a
overexpression in sporadic breast cancer is associated with reduced
expression of estrogen receptor-alpha/breast cancer susceptibility
gene 1 and poor prognosis. Mol Carcinog. 2014.
|
39
|
Sun X, He Y, Huang C, Ma TT and Li J: The
epigenetic feedback loop between DNA methylation and microRNAs in
fibrotic disease with an emphasis on DNA methyltransferases. Cell
Signal. 25:1870–1876. 2013. View Article : Google Scholar : PubMed/NCBI
|