1
|
DeNardo DG and Coussens LM: Inflammation
and breast cancer. Balancing immune response: Crosstalk between
adaptive and innate immune cells during breast cancer progression.
Breast Cancer Res. 9:2122007. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khan TM, Leong JP, Ming LC and Khan AH:
Association of knowledge and cultural perceptions of Malaysian
women with delay in diagnosis and treatment of breast cancer: A
systematic review. Asian Pac J Cancer Prev. 16:5349–5357. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ramdzan ZM and Nepveu A: CUX1, a
haploinsufficient tumour suppressor gene overexpressed in advanced
cancers. Nat Rev Cancer. 14:673–682. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang K, Zhang Q, Li D, Ching K, Zhang C,
Zheng X, Ozeck M, Shi S, Li X, Wang H, Rejto P, et al: PEST domain
mutations in Notch receptors comprise an oncogenic driver segment
in triple-negative breast cancer sensitive to a γ-secretase
inhibitor. Clin Cancer Res. 21:1487–1496. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gurpinar E and Vousden KH: Hitting
cancers' weak spots: Vulnerabilities imposed by p53 mutation.
Trends Cell Biol. 25:486–495. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Desmoulière A, Guyot C and Gabbiani G: The
stroma reaction myofibroblast: A key player in the control of tumor
cell behavior. Int J Dev Biol. 48:509–517. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Siemann DW and Horsman MR: Modulation of
the tumor vasculature and oxygenation to improve therapy. Pharmacol
Ther. 153:107–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sia D, Alsinet C, Newell P and Villanueva
A: VEGF signaling in cancer treatment. Curr Pharm Des.
20:2834–2842. 2014. View Article : Google Scholar
|
10
|
Ji K, Wang B, Shao YT, Zhang L, Liu YN,
Shao C, Li XJ, Li X, Hu JD, Zhao XJ, et al: Synergistic suppression
of prostatic cancer cells by coexpression of both murine double
minute 2 small interfering RNA and wild-type p53 gene in vitro and
in vivo. J Pharmacol Exp Ther. 338:173–183. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang L, Gao L, Li Y, Lin G, Shao Y, Ji K,
Yu H, Hu J, Kalvakolanu DV, Kopecko DJ, et al: Effects of
plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M
tumor cell growth. Clin Cancer Res. 14:559–568. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moreira IS, Fernandes PA and Ramos MJ:
Vascular endothelial growth factor (VEGF) inhibition--a critical
review. Anticancer Agents Med Chem. 7:223–245. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Poon RT, Fan ST and Wong J: Clinical
implications of circulating angiogenic factors in cancer patients.
J Clin Oncol. 19:1207–1225. 2001.PubMed/NCBI
|
14
|
Muller PA and Vousden KH: Mutant p53 in
cancer: New functions and therapeutic opportunities. Cancer Cell.
25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mukhopadhyay D, Tsiokas L and Sukhatme VP:
Wild-type p53 and v-Src exert opposing influences on human vascular
endothelial growth factor gene expression. Cancer Res.
55:6161–6165. 1995.PubMed/NCBI
|
17
|
Agani F, Kirsch DG, Friedman SL, Kastan MB
and Semenza GL: p53 does not repress hypoxia-induced transcription
of the vascular endothelial growth factor gene. Cancer Res.
57:4474–4477. 1997.PubMed/NCBI
|
18
|
Farhang Ghahremani M, Goossens S and Haigh
JJ: The p53 family and VEGF regulation: “It's complicated”. Cell
Cycle. 12:1331–1332. 2013. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Oren M and Rotter V: Mutant p53
gain-of-function in cancer. Cold Spring Harb Perspect Biol.
2:a0011072010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Brachova P, Mueting SR, Devor EJ and
Leslie KK: Oncomorphic TP53 Mutations in Gynecologic Cancers Lose
the Normal Protein:Protein Interactions with the microRNA
Microprocessing Complex. J Cancer Ther. 5:506–516. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zietz C, Rössle M, Haas C, Sendelhofert A,
Hirschmann A, Stürzl M and Löhrs U: MDM-2 oncoprotein
overexpression, p53 gene mutation, and VEGF up-regulation in
angiosarcomas. Am J Pathol. 153:1425–1433. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pal S, Datta K and Mukhopadhyay D: Central
role of p53 on regulation of vascular permeability factor/vascular
endothelial growth factor (VPF/VEGF) expression in mammary
carcinoma. Cancer Res. 61:6952–6957. 2001.PubMed/NCBI
|
23
|
Abusail MS, Dirweesh AMA, Salih RAA and
Gadelkarim AH: Expression of EGFR and p53 in head and neck tumors
among Sudanese patients. Asian Pac J Cancer Prev. 14:6415–6418.
2013. View Article : Google Scholar
|
24
|
Xu CT, Zheng F, Dai X, Du JD, Liu HR, Zhao
L and Li WM: Association between TP53 Arg72Pro polymorphism and
hepatocellular carcinoma risk: A meta-analysis. Asian Pac J Cancer
Prev. 13:4305–4309. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Goh AM, Coffill CR and Lane DP: The role
of mutant p53 in human cancer. J Pathol. 223:116–126. 2011.
View Article : Google Scholar
|
26
|
Muller PAJ, Vousden KH and Norman JC: p53
and its mutants in tumor cell migration and invasion. J Cell Biol.
192:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Brosh R and Rotter V: When mutants gain
new powers: News from the mutant p53 field. Nat Rev Cancer.
9:701–713. 2009.PubMed/NCBI
|
28
|
Yi YW, Kang HJ, Kim HJ, Kong Y, Brown ML
and Bae I: Targeting mutant p53 by a SIRT1 activator YK-3-237
inhibits the proliferation of triple-negative breast cancer cells.
Oncotarget. 4:984–994. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Khoo KH, Verma CS and Lane DP: Drugging
the p53 pathway: Understanding the route to clinical efficacy. Nat
Rev Drug Discov. 13:217–236. 2014. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Song Y, Li X, Li Y, Li N, Shi X, Ding H,
Zhang Y, Li X, Liu G and Wang Z: Non-esterified fatty acids
activate the ROS-p38-p53/Nrf2 signaling pathway to induce bovine
hepa-tocyte apoptosis in vitro. Apoptosis. 19:984–997. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu J, Zhang L, Hwang PM, Kinzler KW and
Vogelstein B: PUMA induces the rapid apoptosis of colorectal cancer
cells. Mol Cell. 7:673–682. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Moens S, Goveia J, Stapor PC, Cantelmo AR
and Carmeliet P: The multifaceted activity of VEGF in angiogenesis
- Implications for therapy responses. Cytokine Growth Factor Rev.
25:473–482. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Stamati K, Priestley JV, Mudera V and
Cheema U: Laminin promotes vascular network formation in 3D in
vitro collagen scaffolds by regulating VEGF uptake. Exp Cell Res.
327:68–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cannon JE, Upton PD, Smith JC and Morrell
NW: Intersegmental vessel formation in zebrafish: Requirement for
VEGF but not BMP signalling revealed by selective and non-selective
BMP antagonists. Br J Pharmacol. 161:140–149. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen J, Tang D, Wang S, Li QG, Zhang JR,
Li P, Lu Q, Niu G, Gao J, Ye NY and Wang DR: High expressions of
galectin-1 and VEGF are associated with poor prognosis in gastric
cancer patients. Tumour Biol. 35:2513–2519. 2014. View Article : Google Scholar
|
36
|
Zhao J, Chen L, Shu B, Tang J, Zhang L,
Xie J, Qi S and Xu Y: Granulocyte/macrophage colony-stimulating
factor influences angiogenesis by regulating the coordinated
expression of VEGF and the Ang/Tie system. PLoS One. 9:e926912014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao D, Pan C, Sun J, Gilbert C,
Drews-Elger K, Azzam DJ, Picon-Ruiz M, Kim M, Ullmer W, El-Ashry D,
et al: VEGF drives cancer-initiating stem cells through
VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene.
34:3107–3119. 2015. View Article : Google Scholar
|
38
|
Tanaka T, Ishiguro H, Kuwabara Y, Kimura
M, Mitsui A, Katada T, Shiozaki M, Naganawa Y, Fujii Y and Takeyama
H: Vascular endothelial growth factor C (VEGF-C) in esophageal
cancer correlates with lymph node metastasis and poor patient
prognosis. J Exp Clin Cancer Res. 29:832010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H
and Zhao L: COX-2-mediated regulation of VEGF-C in association with
lymphangiogenesis and lymph node metastasis in lung cancer. Anat
Rec (Hoboken). 293:1838–1846. 2010. View Article : Google Scholar
|
40
|
Wang TB, Wang J, Wei XQ, Wei B and Dong
WG: Serum vascular endothelial growth factor-C combined with
multi-detector CT in the preoperative diagnosis of lymph node
metastasis of gastric cancer. Asia Pac J Clin Oncol. 8:180–186.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gu J, Tang Y, Liu Y, Guo H, Wang Y, Cai L,
Li Y and Wang B: Murine double minute 2 siRNA and wild-type p53
gene therapy enhances sensitivity of the SKOV3/DDP ovarian cancer
cell line to cisplatin chemotherapy in vitro and in vivo. Cancer
Lett. 343:200–209. 2014. View Article : Google Scholar
|
42
|
Chakraborty S, Adhikary A, Mazumdar M,
Mukherjee S, Bhattacharjee P, Guha D, Choudhuri T, Chattopadhyay S,
Sa G, Sen A, et al: Capsaicin-induced activation of p53-SMAR1
auto-regulatory loop down-regulates VEGF in non-small cell lung
cancer to restrain angiogenesis. PLoS One. 9:e997432014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ravi R, Mookerjee B, Bhujwalla ZM, Sutter
CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenaz GL and Bedi A:
Regulation of tumor angiogenesis by p53-induced degradation of
hypoxia-inducible factor 1alpha. Genes Dev. 14:34–44.
2000.PubMed/NCBI
|
44
|
Vousden KH and Lane DP: p53 in health and
disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sherr CJ and Roberts JM: Inhibitors of
mammalian G1 cyclin-dependent kinases. Genes Dev. 9:1149–1163.
1995. View Article : Google Scholar : PubMed/NCBI
|
46
|
Qiao L, McKinstry R, Gupta S, Gilfor D,
Windle JJ, Hylemon PB, Grant S, Fisher PB and Dent P: Cyclin kinase
inhibitor p21 potentiates bile acid-induced apoptosis in
hepatocytes that is dependent on p53. Hepatology. 36:39–48. 2002.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kondo S, Barna BP, Kondo Y, Tanaka Y,
Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B and
Barnett GH: WAF1/CIP1 increases the susceptibility of p53
non-functional malignant glioma cells to cisplatin-induced
apoptosis. Oncogene. 13:1279–1285. 1996.PubMed/NCBI
|
48
|
Coqueret O: New roles for p21 and p27
cell-cycle inhibitors: A function for each cell compartment? Trends
Cell Biol. 13:65–70. 2003. View Article : Google Scholar : PubMed/NCBI
|