Critical role of miRNAs in mediating skeletal muscle atrophy (Review)
- Authors:
- Yonghui Yu
- Wanli Chu
- Jiake Chai
- Xiao Li
- Lingying Liu
- Li Ma
-
Affiliations: Burn and Plastic Surgery Department, The First Affiliated Hospital to People's Liberation Army General Hospital, Beijing 100048, P.R. China - Published online on: December 30, 2015 https://doi.org/10.3892/mmr.2015.4748
- Pages: 1470-1474
This article is mentioned in:
Abstract
Hitachi K and Tsuchida K: Role of microRNAs in skeletal muscle hypertrophy. Front Physiol. 4:4082014. View Article : Google Scholar : PubMed/NCBI | |
Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y and Kumar A: The E3 Kubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol. 32:1248–1259. 2012. View Article : Google Scholar : PubMed/NCBI | |
McGregor RA, Poppitt SD and Cameron-Smith D: Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans. Ageing Res Rev. 17:25–33. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nystrom G, Pruznak A, Huber D, Frost RA and Lang CH: Local insulin-like growth factor I prevents sepsis-induced muscle atrophy. Metabolism. 58:787–797. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Lai YJ, Chan YL, Li TL and Wu CJ: Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Lett. 305:40–49. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bertsch S, Lang CH and Vary TC: Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock. 35:266–274. 2011. View Article : Google Scholar | |
Hart DW, Wolf SE, Chinkes DL, Gore DC, Mlcak RP, Beauford RB, Obeng MK, Lal S, Gold WF, Wolfe RR and Herndon DN: Determinants of skeletal muscle catabolism after severe burn. Ann Surg. 232:455–465. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012. View Article : Google Scholar : PubMed/NCBI | |
Metter EJ, Talbot LA, Schrager M and Conwit R: Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 57:B359–B365. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chai J, Wu Y and Sheng ZZ: Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit Care Med. 31:1802–1807. 2003. View Article : Google Scholar : PubMed/NCBI | |
Attaix D, Combaret L, Bechet D and Taillandier D: Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr Opin Support Palliat Care. 2:262–266. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sishi B, Loos B, Ellis B, Smith W, du Toit EF and Engelbrecht AM: Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol. 96:179–193. 2011. View Article : Google Scholar | |
Engelbrecht AM, Smith C, Neethling I, Thomas M, Ellis B, Mattheyse M and Myburgh KH: Daily brief restraint stress alters signaling pathways and induces atrophy and apoptosis in rat skeletal muscle. Stress. 13:132–141. 2010. View Article : Google Scholar | |
Dupont-Versteegden EE: Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol. 12:7463–7466. 2006.PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sayed D and Abdellatif M: MicroRNAs in development and disease. Physiol Rev. 91:827–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Didiano D and Hobert O: Molecular architecture of a miRNA-regulated 3′ UTR. RNA. 14:1297–1317. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Travaglini L, Vian L, Billi M, Grignani F and Nervi C: Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol. 41:225–234. 2009. View Article : Google Scholar | |
Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, Tuschl T and Ponzetto C: The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xeno-transplanted mice by promoting myogenic differentiation. J Clin Invest. 119:2366–2378. 2009.PubMed/NCBI | |
Chen Y, Melton DW, Gelfond JA, McManus LM and Shireman PK: MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiol Genomics. 44:1042–1051. 2012. View Article : Google Scholar : PubMed/NCBI | |
Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G and Kunkel LM: Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci. 126:2678–2691. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hartmann-Petersen R and Gordon C: Proteins interacting with the 26S proteasome. Cell Mol Life Sci. 61:1589–1595. 2004.PubMed/NCBI | |
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eddins MJ, Marblestone JG, Suresh Kumar KG, Leach CA, Sterner DE, Mattern MR and Nicholson B: Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem Biophys. 60:113–118. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I and Derijard B: Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev. 127:794–801. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T and Akimoto T: Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem. 286:38456–38465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kukreti H, Amuthavalli K, Harikumar A, Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S, Bonala S, Sriram S, et al: Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem. 288:6663–6678. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baumgarten A, Bang C, Tschirner A, Engelmann A, Adams V, von Haehling S, Doehner W, Pregla R, Anker MS, Blecharz K, et al: TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int J Cardiol. 168:1447–1452. 2013. View Article : Google Scholar : PubMed/NCBI | |
Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM and Costelli P: Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One. 5:e136042010. View Article : Google Scholar : PubMed/NCBI | |
Verhees KJ, Pansters NA, Baarsma HA, Remels AH, Haegens A, de Theije CC, Schols AM, Gosens R and Langen RC: Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res. 14:1172013. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Verma M, Zhang L, Dong C, Flavell RA and Bennett AM: Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J Clin Invest. 123:2064–2077. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malena A, Pennuto M, Tezze C, Querin G, D'Ascenzo C, Silani V, Cenacchi G, Scaramozza A, Romito S, Morandi L, et al: Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol. 126:109–121. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sacco A, Doyonnas R, Kraft P, Vitorovic S and Blau HM: Self-renewal and expansion of single transplanted muscle stem cells. Nature. 456:502–506. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dachs E, Hereu M, Piedrafita L, Casanovas A, Calderó J and Esquerda JE: Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy. J Neuropathol Exp Neurol. 70:444–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang XH: MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care. 16:258–266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X and Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 190:867–879. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dey BK, Gagan J and Dutta A: miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 31:203–214. 2011. View Article : Google Scholar : | |
Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R and Olson EN: microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest. 122:2054–2065. 2012. View Article : Google Scholar : PubMed/NCBI | |
Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, Chapnik E, Dalmay T, Hornstein E and Münsterberg A: MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci USA. 108:11936–11941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Crist CG, Montarras D, Pallafacchina G, Cumano A, Conway SJ and Buckingham M: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 106:13383–13387. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Huang Z, Chen D, Yang T and Liu G: Role of microRNA-27a in myoblast differentiation. Cell Biol Int. 38:266–271. 2014. View Article : Google Scholar | |
Wong CF and Tellam RL: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 283:9836–9843. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dey BK, Gagan J, Yan Z and Dutta A: miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 26:2180–2191. 2012. View Article : Google Scholar : PubMed/NCBI | |
Antoniou A, Mastroyiannopoulos NP, Uney JB and Phylactou LA: miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem. 289:3923–3935. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Chen X, Yu B, He J and Chen D: MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun. 423:265–269. 2012. View Article : Google Scholar : PubMed/NCBI | |
McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R and Sharma M: Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One. 9:e876872014. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Chen XL, Huang ZQ, Wen WX, Xu M, Chen DW, Yu B, He J, Luo JQ, Yu J, et al: MicroRNA-27a promotes porcine myoblast proliferation by downregulating myostatin expression. Animal. 8:1867–1872. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Sun Y and Chen J: IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 192:69–81. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang MB, Xu H, Xie SJ, Zhou H and Qu LH: Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One. 6:e291732011. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, Zhang QL, Zhu JY, Yang GS and Shi XE: MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci. 15:296–308. 2013. View Article : Google Scholar | |
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q and Zhang X: The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis. 5:e13472014. View Article : Google Scholar : PubMed/NCBI | |
Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT and Wang DZ: miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem. 286:35339–35346. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY and Zhao SH: miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 4:e6682013. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Wang L, Lu L, Jiang P, Sun H and Wang H: A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem. 287:25255–25265. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dupont-Versteegden EE: Apoptosis in muscle atrophy: Relevance to sarcopenia. Exp Gerontol. 40:473–481. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dirks AJ and Leeuwenburgh C: The role of apoptosis in age-related skeletal muscle atrophy. Sports Med. 35:473–483. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee HY, Kaneki M, Andreas J, Tompkins RG and Martyn JA: Novel mitochondria-targeted antioxidant peptide ameliorates burn-induced apoptosis and endoplasmic reticulum stress in the skeletal muscle of mice. Shock. 36:580–585. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fanzani A, Conraads VM, Penna F and Martinet W: Molecular and cellular mechanisms of skeletal muscle atrophy: An update. J Cachexia Sarcopenia Muscle. 3:163–179. 2012. View Article : Google Scholar : PubMed/NCBI | |
Libera LD, Zennaro R, Sandri M, Ambrosio GB and Vescovo G: Apoptosis and atrophy in rat slow skeletal muscles in chronic heart failure. Am J Physiol. 277:C982–C986. 1999.PubMed/NCBI | |
Yasuhara S, Perez ME, Kanakubo E, Yasuhara Y, Shin YS, Kaneki M, Fujita T and Martyn JA: Skeletal muscle apoptosis after burns is associated with activation of proapoptotic signals. Am J Physiol Endocrinol Metab. 279:E1114–E1121. 2000.PubMed/NCBI | |
Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY and Leeuwenburgh C: Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med. 44:160–168. 2008. View Article : Google Scholar : PubMed/NCBI | |
Callis TE, Chen JF and Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26:219–225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Idris NM, Ashraf M, Ahmed RP, Shujia J and Haider KH: Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 7:47–57. 2012. View Article : Google Scholar | |
Haider KH, Idris NM, Kim HW, Ahmed RP, Shujia J and Ashraf M: MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res. 88:168–178. 2010. View Article : Google Scholar : PubMed/NCBI | |
He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y and Asakura A: MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol. 191:347–365. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395–403. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sugita H, Kaneki M, Sugita M, Yasukawa T, Yasuhara S and Martyn JA: Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab. 288:E585–E591. 2005. View Article : Google Scholar | |
Du K, Yu Y, Zhang D, Luo W, Huang H, Chen J, Gao J and Huang C: NFkappaB1 (p50) suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis. Mol Biol Cell. 24:3577–3583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH and Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117:399–412. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sheriff S, Kadeer N, Joshi R, Friend LA, James JH and Balasubramaniam A: Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. Mol Cell Endocrinol. 351:286–295. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, Estrella EA, Kang PB, Kawahara G and Kunkel LM: Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle. 1:272011. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W and Nakshatri H: Cancer affects microRNA expression, release and function in cardiac and skeletal muscle. Cancer Res. 74:4270–4281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hitachi K, Nakatani M and Tsuchida K: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. Int J Biochem Cell Biol. 47:93–103. 2014. View Article : Google Scholar | |
Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA and Price SR: miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol. 307:C314–C319. 2014. View Article : Google Scholar : PubMed/NCBI |