1
|
Bissinger AL, Sinzger C, Kaiserling E and
Jahn G: Human cytomegalovirus as a direct pathogen: Correlation of
multiorgan involvement and cell distribution with clinical and
pathological findings in a case of congenital inclusion disease. J
Med Virol. 67:200–206. 2002. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Plachter B, Sinzger C and Jahn G: Cell
types involved in replication and distribution of human
cytomegalovirus. Adv Virus Res. 46:195–261. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sinzger C, Grefte A, Plachter B, Gouw AS,
The TH and Jahn G: Fibroblasts, epithelial cells, endothelial cells
and smooth muscle cells are major targets of human cytomegalovirus
infection in lung and gastrointestinal tissues. J Gen Virol.
76:741–750. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mocarski ES: Cytomegaloviruses. Fields
Virology. Fields BN, Knipe DM and Howley PM: Lippincott-Raven;
Philadelphia, Pennsylvania, USA: pp. 2447–2492. 2006
|
5
|
Sinzger C, Plachter B, Grefte A, The TH
and Jahn G: Tissue macrophages are infected by human
cytomegalovirus in vivo. J Infect Dis. 173:240–245. 1996.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kahl M, Siegel-Axel D, Stenglein S, Jahn G
and Sinzger C: Efficient lytic infection of human arterial
endothelial cells by human cytomegalovirus strains. J Virol.
74:7628–7635. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Riegler S, Hebart H, Einsele H, Brossart
P, Jahn G and Sinzger C: Monocyte-derived dendritic cells are
permissive to the complete replicative cycle of human
cytomegalovirus. J Gen Virol. 81:393–399. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dolan A, Cunningham C, Hector RD,
Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer
D, Emery VC, et al: Genetic content of wild-type human
cytomegalovirus. J Gen Virol. 85:1301–1312. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li M, Ma Y, Ji Y, He R, Qi Y, Sun Z, Wang
N, Gao S and Ruan Q: Human cytomegalovirus RL13 gene transcripts in
a clinical strain. Virus Genes. 43:327–334. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stanton RJ, Baluchova K, Dargan DJ,
Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies
JA, Tomasec P, et al: Reconstruction of the complete human
cytomegalovirus genome in a BAC reveals RL13 to be a potent
inhibitor of replication. J Clin Invest. 120:3191–3208. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Dargan DJ, Douglas E, Cunningham C,
Jamieson F, Stanton RJ, Baluchova K, McSharry BP, Tomasec P, Emery
VC, Percivalle E, et al: Sequential mutations associated with
adaptation of human cytomegalovirus to growth in cell culture. J
Gen Virol. 91:1535–1546. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cortese M, Calò S, D'Aurizio R, Lilja A,
Pacchiani N and Merola M: Recombinant human cytomegalovirus (HCMV)
RL13 binds human immunoglobulin G Fc. PLoS One. 7:e501662012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
To A, Bai Y, Shen A, Gong H, Umamoto S, Lu
S and Liu F: Yeast two hybrid analyses reveal novel binary
interactions between human cytomegalovirus-encoded virion proteins.
PLoS One. 6:e177962011. View Article : Google Scholar : PubMed/NCBI
|
14
|
McMahon TP and Anders DG: Interactions
between human cytomegalovirus helicase-primase proteins. Virus Res.
86:39–52. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Stepanchenko NS, Novikova GV and Moshkov
IE: Protein quantification. Russ J Plant Physiol. 58:727–742. 2011.
View Article : Google Scholar
|
16
|
Liu F and Altman S: Inhibition of viral
gene expression by the catalytic RNA subunit of RNase P from
Escherichia coli. Genes Dev. 9:471–480. 1995. View Article : Google Scholar : PubMed/NCBI
|
17
|
Miller AD and Rosman GJ: Improved
retroviral vectors for gene transfer and expression. Biotechniques.
7:980–982. 984–986. 989–990. 1989.PubMed/NCBI
|
18
|
Hänfler J, Kreuzer Ka, Laurisch K, Rayes
N, Neuhaus P, Schmidt CA and Oettle H: Quantitation of
cytomegalovirus (hCMV) DNA and beta-actin DNA by duplex real-time
fluorescence PCR in solid organ (liver) transplant recipients. Med
Microbiol Immunol. 192:197–204. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Su J, Zhu Z, Xiong F and Wang Y: Hybrid
cytomegalovirus-U6 promoter-based plasmid vectors improve
efficiency of RNA interference in zebrafish. Mar Biotechnol (NY).
10:511–517. 2008. View Article : Google Scholar
|
20
|
Cahill AL, Moore JM, Sabar FI and Harkins
AB: Variability in RNA interference in neuroendocrine PC12 cell
lines stably transfected with an shRNA plasmid. J Neurosci Methods.
166:236–240. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Duan QJ, Tao R, Hu MF and Shang SQ:
Efficient inhibition of human cytomegalovirus UL122 gene expression
in cell by small interfering RNAs. J Basic Microbiol. 49:531–537.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mocarski ES, Shenk T and Pass RF:
Cytomegalovirus. Fields virology. Knipe DM, Howley PM, Griffin DE,
et al: Lippincott Williams & Wilkins; Philadelphia, PA: pp.
2701–2772. 2007
|
24
|
Roizman B, Knipe D and Whitley R: Herpes
simplex viruses. Fields virology. Knipe DM and Howley PM:
Lippincott Williams & Wilkins; Philadelphia, Pennsylvania, USA:
pp. 2503–2601. 2007
|
25
|
Aksamit RR and Ebner KE: Purification,
properties and kinetic analysis of UDP-glucose pyrophosphorylase
from bovine mammary tissue. Biochim Biophys Acta. 268:102–112.
1972. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bessman MJ, Frick DN and O'Handley SF: The
MutT proteins or 'Nudix' hydrolases, a family of versatile, widely
distributed, 'housecleaning' enzymes. J Biol Chem. 271:25059–25062.
1996. View Article : Google Scholar : PubMed/NCBI
|
27
|
McLennan AG: The nudix hydrolase
superfamily. Cell Mol Life Sci. 63:123–143. 2006. View Article : Google Scholar
|
28
|
Heyen CA, Tagliabracci VS, Zhai L and
Roach PJ: Characterization of mouse UDP-glucose pyrophosphatase, a
Nudix hydrolase encoded by the Nudt14 gene. Biochem Biophys Res
Commun. 390:1414–1418. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yagi T, Baroja-Fernández E, Yamamoto R,
Muñoz FJ, Akazawa T, Hong KS and Pozueta-Romero J: Cloning,
expression and characterization of a mammalian Nudix hydrolase-like
enzyme that cleaves the pyrophosphate bond of UDP-glucose. Biochem
J. 370:409–415. 2003. View Article : Google Scholar
|
30
|
Rodriguez-López M, Baroja-Fernández E,
Zandueta-Criado A and Pozueta-Romero J: Adenosine diphosphate
glucose pyrophosphatase: A plastidial phosphodiesterase that
prevents starch biosynthesis. Proc Natl Acad Sci USA. 97:8705–8710.
2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Moreno-Bruna B, Baroja-Fernández E, Muñoz
FJ, Bastarrica-Berasategui A, Zandueta-Criado A, Rodriguez-López M,
Lasa I, Akazawa T and Pozueta-Romero J: Adenosine diphosphate sugar
pyrophosphatase prevents glycogen biosyn-thesis in Escherichia
coli. Proc Natl Acad Sci USA. 98:8128–8132. 2001. View Article : Google Scholar
|