Identification of diagnostic and prognostic biomarkers for cancer: Focusing on genetic variations in microRNA regulatory pathways (Review)
- Authors:
- Zhen Guo
- Yan Shu
- Honghao Zhou
- Wei Zhang
-
Affiliations: Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Pharmaceutical Sciences, School of Phamacy, University of Maryland, Baltimore, MD 21201, USA - Published online on: January 14, 2016 https://doi.org/10.3892/mmr.2016.4782
- Pages: 1943-1952
This article is mentioned in:
Abstract
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lee RC and Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001. View Article : Google Scholar : PubMed/NCBI | |
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baek D, Villén J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ambros V: MicroRNA pathways in flies and worms: Growth, death, fat, stress and timing. Cell. 113:673–676. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cullen BR: Transcription and processing of human microRNA precursors. Mol Cell. 16:861–865. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lund E, Güttinger S, Calado A, Dahlberg JE and Kutay U: Nuclear export of microRNA precursors. Science. 303:95–98. 2004. View Article : Google Scholar | |
Mishra PJ and Bertino JR: MicroRNA polymorphisms: The future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics. 10:399–416. 2009. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Medina PP, Nolde M and Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mishra PJ, Mishra PJ, Banerjee D and Bertino JR: MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle. 7:853–858. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ryan BM, Robles AI and Harris CC: Genetic variation in microRNA networks: The implications for cancer research. Nat Rev Cancer. 10:389–402. 2010. View Article : Google Scholar : PubMed/NCBI | |
Salzman DW and Weidhaas JB: SNPing cancer in the bud: MicroRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer. Pharmacol Ther. 137:55–63. 2013. View Article : Google Scholar : | |
Noh H, Hong S, Dong Z, Pan ZK, Jing Q and Huang S: Impaired MicroRNA processing facilitates breast cancer cell invasion by upregulating Urokinase-Type plasminogen activator expression. Genes Cancer. 2:140–150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Lee KM, Choi JY, Han S, Lee JY, Li L, Park SK, Yoo KY, Noh DY, Ahn SH and Kang D: Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: A case-control study in Korea. Breast Cancer Res Treat. 130:939–951. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X, Guan X, Wang Y, Han J, Jiang T, et al: Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. Int J Cancer. 133:2216–2224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Jeon S, Lee KM, Han S, Song M, Choi JY, Park SK, Yoo KY, Noh DY, Ahn SH and Kang D: Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. Bmc Cancer. 12:1952012. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Zhang B, Choi JY, Long J, Park SK, Yoo KY, Noh DY, Ahn SH, Zheng W and Kang D: Common genetic variants in the microRNA biogenesis pathway are not associated with breast cancer risk in Asian women. Cancer Epidemiol Biomarkers Prev. 21:1385–1387. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG and Wu X: Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 31:1805–1812. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weng Y, Chen Y, Chen J, Liu Y and Bao T: Common genetic variants in the microRNA biogenesis pathway are associated with malignant peripheral nerve sheath tumor risk in a Chinese population. Cancer Epidemiol. 37:913–916. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ke HL, Chen M, Ye Y, Hildebrandt MA, Wu WJ, Wei H, Huang M, Chang DW, Dinney CP and Wu X: Genetic variations in micro-RNA biogenesis genes and clinical outcomes in non-muscle-invasive bladder cancer. Carcinogenesis. 34:1006–1011. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yi R, Doehle BP, Qin Y, Macara IG and Cullen BR: Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. Rna. 11:220–226. 2005. View Article : Google Scholar | |
Zeng Y and Cullen BR: Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32:4776–4785. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Li C, Wang H, Li B and Guo Z: A miR-SNP of the XPO5 gene is associated with advanced non-small-cell lung cancer. Onco Targets Ther. 6:877–881. 2013.PubMed/NCBI | |
Guo Z, Wang H, Li Y, Li B, Li C and Ding C: A microRNA-related single nucleotide polymorphism of the XPO5 gene is associated with survival of small cell lung cancer patients. Biomed Rep. 1:545–548. 2013. | |
Liu S, An J, Lin J, Liu Y, Bao L, Zhang W and Zhao JJ: Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PLoS One. 9:e927912014. View Article : Google Scholar : PubMed/NCBI | |
Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J, Paranjape T and Zhu Y: Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet. 2:9–18. 2011.PubMed/NCBI | |
Ma H, Yuan H, Yuan Z, Yu C, Wang R, Jiang Y, Hu Z, Shen H and Chen N: Genetic variations in key microRNA processing genes and risk of head and neck cancer: A case-control study in Chinese population. PLoS One. 7:e475442012. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Qin Z, Pan S, Jiang J, Liu L, Liu J, Chen X, Hu Z and Shen H: Genetic variants in RAN, DICER and HIWI of microRNA biogenesis genes and risk of cervical carcinoma in a Chinese population. Chin J Cancer Res. 25:565–571. 2013.PubMed/NCBI | |
Liu L, An J, Liu J, Wen J, Zhai X, Liu Y, Pan S, Jiang J, Wen Y, Liu Z, et al: Potentially functional genetic variants in microRNA processing genes and risk of HBV-related hepatocellular carcinoma. Mol Carcinog. 52(Suppl 1): E148–E154. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu J, Wei M, He Y, Liao B, Liao G, Li H and Huang J: Genetic variants in the microRNA machinery gene GEMIN4 are associated with risk of prostate cancer: A case-control study of the Chinese Han population. Dna Cell Biol. 31:1296–1302. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X and Lu K: Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival and treatment response. Cancer Res. 70:9765–9776. 2010. View Article : Google Scholar : PubMed/NCBI | |
Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, Lin J, Habuchi T and Wu X: Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res. 14:7956–7962. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wan D, He M, Wang J, Qiu X, Zhou W, Luo Z, Chen J and Gu J: Two variants of the human hepatocellular carcinoma-associated HCAP1 gene and their effect on the growth of the human liver cancer cell line Hep3B. Genes Chromosomes Cancer. 39:48–58. 2004. View Article : Google Scholar | |
Adams BD, Claffey KP and White BA: Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology. 150:14–23. 2009. View Article : Google Scholar : | |
Kim MS, Oh JE, Kim YR, Park SW, Kang MR, Kim SS, Ahn CH, Yoo NJ and Lee SH: Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol. 221:139–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, Cartron MA, van Rhee F, Nair B, Waheed S, et al: High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA. 107:7904–7909. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J, Yang C and Jiang Y: Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene. 33:193–202. 2014. View Article : Google Scholar | |
Zhang N, Huo Q, Wang X, Chen X, Long L, Jiang L, Ma T and Yang Q: A genetic variant in pre-miR-27a is associated with a reduced breast cancer risk in younger Chinese population. Gene. 529:125–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Schlehe B, Hemminki K, Sutter C, Bugert P, Wappenschmidt B, Volkmann J, Varon R, Weber BH, Niederacher D, et al: A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat. 121:693–702. 2010. View Article : Google Scholar | |
Shi D, Li P, Ma L, Zhong D, Chu H, Yan F, Lv Q, Qin C, Wang W, Wang M, et al: A genetic variant in pre-miR-27a is associated with a reduced renal cell cancer risk in a Chinese population. PLoS One. 7:e465662012. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Yin Z, Shen H, Gao W, Qian Y, Pei D, Liu L and Shu Y: A genetic polymorphism in pre-miR-27a confers clinical outcome of non-small cell lung cancer in a Chinese population. PLoS One. 8:e791352013. View Article : Google Scholar : PubMed/NCBI | |
Hezova R, Kovarikova A, Bienertova-Vasku J, Sachlova M, Redova M, Vasku A, Svoboda M, Radova L, Kiss I, Vyzula R and Slaby O: Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. World J Gastroenterol. 18:2827–2831. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, He CY, Liu JW and Yuan Y: Pre-miR-27a rs895819A/G polymorphisms in cancer: A meta-analysis. PLoS One. 8:e652082013. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Lai J, Wang Y, Nie W and Guan X: The Hsa-miR-27a rs895819 (A>G) polymorphism and cancer susceptibility. Gene. 521:87–90. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Chen Z, Xu J, Li W and Zhao J: Pre-mir-27a rs895819 polymorphism and cancer risk: A meta-analysis. Mol Biol Rep. 40:3181–3186. 2013. View Article : Google Scholar | |
Xu W, Xu J, Liu S, Chen B, Wang X, Li Y, Qian Y, Zhao W and Wu J: Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: A meta-analysis. PLoS One. 6:e204712011. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Q, Liu H, Shao N, Tan B, Zhang G, Wang K, Jia Y, Ma W, Wang N and Cheng Y: The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: A meta-analysis of 32 studies. Mutagenesis. 27:779–788. 2012. View Article : Google Scholar : PubMed/NCBI | |
Srivastava K and Srivastava A: Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PLoS One. 7:e509662012. View Article : Google Scholar : PubMed/NCBI | |
Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF and Xie SY: The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One. 8:e706562013. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Xu L, Ye X, Shen S, Li Z, Niu X and Lu S: Polymorphisms of microRNA sequences or binding sites and lung cancer: A meta-analysis and systematic review. PLoS One. 8:e610082013. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Zeng X, Yang D, Wang W and Liu Z: Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One. 8:e610472013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li L, Xiang X, Wang H, Cai W, Xie J, Han Y, Bao S and Xie Q: Three common functional polymorphisms in microRNA encoding genes in the susceptibility to hepatocellular carcinoma: A systematic review and meta-analysis. Gene. 527:584–593. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wan D, Gu W, Xu G, Shen C, Ding D, Shen S, Wang S, Gong X, He S and Zhi Q: Effects of common polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on susceptibility to colorectal cancer: A systematic review meta-analysis. Clin Transl Oncol. 16:792–800. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Jin M, Zhang M and Chen K: A genetic variant in miR-196a2 increase digestive system cancer risks: A meta-analysis of 15 case-control studies. PLoS One. 7:e305852012. View Article : Google Scholar | |
Yoon KA, Yoon H, Park S, Jang HJ, Zo JI, Lee HS and Lee JS: The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. J Thorac Cardiovasc Surg. 144:794–807. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, et al: Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 118:2600–2608. 2008.PubMed/NCBI | |
Li L, Chen XP and Li YJ: MicroRNA-146a and human disease. Scand J Immunol. 71:227–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J and Benz CC: Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 27:5643–5647. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin SL, Chiang A, Chang D and Ying SY: Loss of mir-146a function in hormone-refractory prostate cancer. RNA. 14:417–424. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR and de la Chapelle A: Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 105:7269–7274. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, He X, Li J, Xie Q, Lin J and Chang Y: Association of a single-nucleotide polymorphism within the miR-146a gene with susceptibility for acute-on-chronic hepatitis B liver failure. Immunogenetics. 65:257–263. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Chen X, Hu L, Han S, Qiang F, Wu Y, Pan L, Shen H, Li Y and Hu Z: Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer, a case-control study in Chinese women. Gynecol Oncol. 117:287–290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li G, Wei S, Niu J, El-Naggar AK, Sturgis EM and Wei Q: Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer. 116:4753–4760. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen QH, Wang QB and Zhang B: Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: A HuGE meta-analysis. Tumour Biol. 35:529–543. 2014. View Article : Google Scholar | |
Li Y, Liu J, Yuan C, Cui B, Zou X and Qiao Y: High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res. 38:1730–1736. 2010. View Article : Google Scholar | |
Shi TY, Chen XJ, Zhu ML, Wang MY, He J, Yu KD, Shao ZM, Sun MH, Zhou XY, Cheng X, et al: A pri-miR-218 variant and risk of cervical carcinoma in Chinese women. Bmc Cancer. 13:192013. View Article : Google Scholar : PubMed/NCBI | |
Zhang LS, Liang WB, Gao LB, Li HY, Li LJ, Chen PY, Liu Y, Chen TY, Han JG, Wei YG, et al: Association between pri-miR-218 polymorphism and risk of hepatocellular carcinoma in a Han Chinese population. Dna Cell Biol. 31:761–765. 2012. View Article : Google Scholar | |
Cipollini M, Landi S and Gemignani F: MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med. 7:173–191. 2014.PubMed/NCBI | |
Georges M, Clop A, Marcq F, Takeda H, Pirottin D, Hiard S, Tordoir X, Caiment F, Meish F, Bibé B, et al: Polymorphic microRNA-target interactions: A novel source of phenotypic variation. Cold Spring Harb Symp Quant Biol. 71:343–350. 2006. View Article : Google Scholar | |
Pu X, Roth JA, Hildebrandt MA, Ye Y, Wei H, Minna JD, Lippman SM and Wu X: MicroRNA-related genetic variants associated with clinical outcomes in early-stage non-small cell lung cancer patients. Cancer Res. 73:1867–1875. 2013. View Article : Google Scholar : PubMed/NCBI | |
McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J and Dyer MA: Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retino-blastoma. PLoS One. 7:e427392012. View Article : Google Scholar | |
Zhou L, Zhang X, Li Z, Zhou C, Li M, Tang X, Lu C, Li H, Yuan Q and Yang M: Association of a genetic variation in a miR-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLoS One. 8:e643312013. View Article : Google Scholar : PubMed/NCBI | |
Wynendaele J, Böhnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S, Sbrzesny N, Kubitza D, Wolf A, Gradhand E, et al: An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 70:9641–9649. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhao H, Zhao X, Wan J, Wang D, Bi W, Jiang X and Gao Y: Association between an insertion/deletion polymorphism within 3′UTR of SGSM3 and risk of hepatocellular carcinoma. Tumour Biol. 35:295–301. 2014. View Article : Google Scholar | |
Zhu Z, Jiang Y, Chen S, Jia S, Gao X, Dong D and Gao Y: An insertion/deletion polymorphism in the 3′ untranslated region of type I collagen a2 (COL1A2) is associated with susceptibility for hepatocellular carcinoma in a Chinese population. Cancer Genet. 204:265–269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Xu G, Huang J, Zhou D, Huang X and Shen L: Analysis of the association between an insertion/deletion polymorphism within the 3′ untranslated region of COL1A2 and chronic venous insufficiency. Ann Vasc Surg. 27:959–963. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ioannidis JP, Ntzani EE, Trikalinos TA and Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet. 29:306–309. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D; NCI-NHGRI Working Group on Replication in Association Studies; et al: Replicating genotype-phenotype associations. Nature. 447:655–660. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Ivan M, Cimmino A, Negrini M and Calin GA: Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther. 7:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI | |
Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al: MiR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI | |
Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, San José-Eneriz E, Abizanda G, Rodríguez-Otero P, Fortes P, et al: Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 69:4443–4453. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, Lee KF and Yeung WS: MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 31:1037–1044. 2010. View Article : Google Scholar : PubMed/NCBI | |
Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G and Dahiya R: MiR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 72:6435–6446. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zisoulis DG, Kai ZS, Chang RK and Pasquinelli AE: Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature. 486:541–544. 2012.PubMed/NCBI | |
Juvvuna PK, Khandelia P, Lee LM and Makeyev EV: Argonaute identity defines the length of mature mammalian microRNAs. Nucleic Acids Res. 40:6808–6820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang JS, Maurin T and Lai EC: Functional parameters of Dicer-independent microRNA biogenesis. RNA. 18:945–957. 2012. View Article : Google Scholar : PubMed/NCBI | |
Plante I, Plé H, Landry P, Gunaratne PH and Provost P: Modulation of microRNA activity by Semi-microRNAs. Front Genet. 3:992012. View Article : Google Scholar : PubMed/NCBI | |
Faller M and Guo F: MicroRNA biogenesis: There's more than one way to skin a cat. Biochim Biophys Acta. 1779:663–667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C and Diederichs S: Loop-miRs: Active microRNAs generated from single-stranded loop regions. Nucleic Acids Res. 41:5503–5512. 2013. View Article : Google Scholar : PubMed/NCBI | |
Berezikov E, Liu N, Flynt AS, Hodges E, Rooks M, Hannon GJ and Lai EC: Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet. 42:6–9. 2010. View Article : Google Scholar | |
Ruby JG, Jan CH and Bartel DP: Intronic microRNA precursors that bypass Drosha processing. Nature. 448:83–86. 2007. View Article : Google Scholar : PubMed/NCBI |