1
|
Ali TK and El-Remessy AB: Diabetic
retinopathy: Current management and experimental therapeutic
targets. Pharmacotherapy. 29:182–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tang J and Kern TS: Inflammation in
diabetic retinopathy. Prog Retin Eye Res. 30:343–358. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Abcouwer SF and Gardner TW: Diabetic
retinopathy: Loss of neuroretinal adaptation to the diabetic
metabolic environment. Ann N Y Acad Sci. 1311:174–190. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Simó R and Hernández C; the European
Consortium for the Early Treatment of Diabetic Retinopathy
(EUROCONDOR): Neurodegeneration is an early event in diabetic
retinopathy: Therapeutic implications. Br J Ophthalmol.
96:1285–1290. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Melmed RN, Benitez CJ and Holt SJ:
Intermediate cells of the pancreas. 3. Selective autophagy and
destruction of beta-granules in intermediate cells of the rat
pancreas induced by alloxan and streptozotocin. J Cell Sci.
13:297–315. 1973.PubMed/NCBI
|
6
|
Montgomery SB, Sammeth M,
Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R and
Dermitzakis ET: Transcriptome genetics using second generation
sequencing in a Caucasian population. Nature. 464:773–777. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
The Association for Research in Vision and
Ophtalmology: Policies: Statement for the use of animals in
ophtalmic and visual research. http://www.arvo.org/About_ARVO/Policies/Statement_for_the_Use_of_Animals_in_Ophthalmic_and_Visual_Research/.
Accessed January 15, 2013.
|
8
|
Marmor MF, Holder GE, Seeliger MW and
Yamamoto S: International Society for Clinical Electrophysiology:
Standard for clinical electroretinography (2004 update). Doc
Ophthalmol. 108:107–114. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mortazavi A, Williams BA, McCue K,
Schaeffer L and Wold B: Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 5:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zheng Q and Wang XJ: GOEAST: A web-based
software toolkit for Gene Ontology enrichment analysis. Nucleic
Acids Res. 36:W358–W363. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ye J, Fang L, Zheng H, Zhang Y, Chen J,
Zhang Z and Wang J, Li S, Li R, Bolund L and Wang J: WEGO: A web
tool for plotting GO annotations. Nucleic Acids Res. 34(Web Server
issue): W293–W297. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Al-Shahrour F, Arbiza L, Dopazo H,
Huerta-Cepas J, Mínguez P, Montaner D and Dopazo J: From genes to
functional classes in the study of biological systems. BMC
Bioinformatics. 8:1142007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kanehisa M, Araki M, Goto S, Hattori M,
Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T
and Yamanishi Y: KEGG for linking genomes to life and the
environment. Nucleic Acids Res. 36(Database issue): D480–D484.
2008. View Article : Google Scholar :
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
15
|
Hood DC, Bach M, Brigell M, Keating D,
Kondo M, Lyons JS, Marmor MF, McCulloch DL and Palmowski-Wolfe AM:
the International Society For Clinical Electrophysiology of Vision:
ISCEV standard for clinical multifocal electroretinography (mfERG)
(2011 edition). Doc Ophthalmol. 124:1–13. 2012. View Article : Google Scholar
|
16
|
Robson JG and Frishman LJ: Photoreceptor
and bipolar cell contributions to the cat electroretinogram: A
kinetic model for the early part of the flash response. J Opt Soc
Am A Opt Image Sci Vis. 13:613–622. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hood DC and Birch DG: Beta wave of the
scotopic (rod) electroretinogram as a measure of the activity of
human on-bipolar cells. J Opt Soc Am A Opt Image Sci Vis.
13:6231996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kondo M: Animal models of human retinal
and optic nerve diseases analysed using electroretinography. Nippon
Ganka Gakkai Zasshi. 114:248–278. 2010.In Japanese.
|
19
|
Heynen H, Wachtmeister L and van Norren D:
Origin of the oscillatory potentials in the primate retina. Vision
Res. 25:1365–1373. 1985. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hennekes R: Clinical electroretinography.
Fortschr Ophthalmol. 86:146–150. 1989.In German.
|
21
|
Phipps JA, Yee P, Fletcher EL and Vingrys
AJ: Rod photoreceptor dysfunction in diabetes: Activation,
deactivation and dark adaptation. Invest Ophthalmol Vis Sci.
47:3187–3194. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Phipps JA, Fletcher EL and Vingrys AJ:
Paired-flash identification of rod and cone dysfunction in the
diabetic rat. Invest Ophthalmol Vis Sci. 45:4592–4600. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Q, Zemel E, Miller B and Perlman I:
Early retinal damage in experimental diabetes:
Electroretinographical and morphological observations. Exp Eye Res.
74:615–625. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hancock HA and Kraft TW: Oscillatory
potential analysis and ERGs of normal and diabetic rats. Invest
Ophthalmol Vis Sci. 45:1002–1008. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bui BV, Armitage JA, Tolcos M, Cooper ME
and Vingrys AJ: ACE inhibition salvages the visual loss caused by
diabetes. Diabetologia. 46:401–408. 2003.PubMed/NCBI
|
26
|
Sakai H, Tani Y, Shirasawa E, Shirao Y and
Kawasaki K: Development of electroretinographic alterations in
streptozotocin-induced diabetes in rats. Ophthalmic Res. 27:57–63.
1995. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ramsey DJ, Ripps H and Qian H: An
electrophysiological study of retinal function in the diabetic
female rat. Invest Ophthalmol Vis Sci. 47:5116–5124. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Papac-Milicevic N, Breuss JM, Zaujec J,
Ryban L, Plyushch T, Wagner GA, Fenzl S, Dremsek P, Cabaravdic M,
Steiner M, et al: The interferon stimulated gene 12 inactivates
vasculoprotective functions of NR4A nuclear receptors. Circ Res.
110:e50–e63. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Storch J and Thumser AE: Tissue-specific
functions in the fatty acid-binding protein family. J Biol Chem.
285:32679–32683. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY
and Wen CY: Reactive changes of retinal astrocytes and Muller glial
cells in kainate-induced neuroexcitotoxicity. J Anat. 210:54–65.
2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Takei Y, Hyodo S, Katafuchi T and Minamino
N: Novel fish-derived adrenomedullin in mammals: Structure and
possible function. Peptides. 25:1643–1656. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Roh J, Chang CL, Bhalla A, Klein C and Hsu
SY: Intermedin is a calcitonin/calcitonin gene-related peptide
family peptide acting through the calcitonin receptor-like
receptor/receptor activity-modifying protein receptor complexes. J
Biol Chem. 279:7264–7274. 2004. View Article : Google Scholar
|
33
|
Russell FA, King R, Smillie SJ, Kodji X
and Brain SD: Calcitonin gene-related peptide: Physiology and
pathophysiology. Physiol Rev. 94:1099–1142. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang JH, Zhang YQ and Guo Z: Endogenous
CGRP protects retinal cells against stress induced apoptosis in
rats. Neurosci Lett. 501:83–85. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Murphy TL, Tussiwand R and Murphy KM:
Specificity through cooperation: BATF-IRF interactions control
immune-regulatory networks. Nat Rev Immunol. 13:499–509. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang D, Peng C, Li X, Fan X, Li L, Ming M,
Chen S and Le W: Pitx3-transfected astrocytes secrete brain-derived
neurotrophic factor and glial cell line-derived neurotrophic factor
and protect dopamine neurons in mesencephalon cultures. J Neurosci
Res. 86:3393–3400. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nunes I, Tovmasian LT, Silva RM, Burke RE
and Goff SP: Pitx3 is required for development of substantia nigra
dopaminergic neurons. Proc Natl Acad Sci USA. 100:4245–4250. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Hwang DY, Ardayfio P, Kang UJ, Semina EV
and Kim KS: Selective loss of dopaminergic neurons in the
substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol
Brain Res. 114:123–131. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ahmad N, Aslam M, Muenster D, Horsch M,
Khan MA, Carlsson P, Beckers J and Graw J: Pitx3 directly regulates
Foxe3 during early lens development. Int J Dev Biol. 57:741–751.
2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu
M, Boulton M, Lyons TJ, Gao G and Ma JX: Activation of the Wnt
pathway plays a pathogenic role in diabetic retinopathy in humans
and animal models. Am J Pathol. 175:2676–2685. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Grunewald E, Tew KD, Porteous DJ and
Thomson PA: Developmental expression of orphan G protein-coupled
receptor 50 in the mouse brain. ACS Chem Neurosci. 3:459–472. 2012.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Smolich BD, Tarkington SK, Saha MS and
Grainger RM: Xenopus gamma-crystallin gene-expression: Evidence
that the gamma-crystallin gene family is transcribed in lens and
nonlens tissues. Mol Cell Biol. 14:1355–1363. 1994. View Article : Google Scholar : PubMed/NCBI
|
43
|
Head MW, Peter A and Clayton RM: Evidence
for the extralenticular expression of members of the
beta-crystallin gene family in the chick and a comparison with
delta-crystallin during differentiation and transdifferentiation.
Differentiation. 48:147–156. 1991. View Article : Google Scholar : PubMed/NCBI
|
44
|
Clayton RM, Jeanny JC, Bower DJ and
Errington LH: The presence of extralenticular crystallins and its
relationship with transdifferentiation to lens. Curr Top Dev Biol.
20:137–151. 1986. View Article : Google Scholar : PubMed/NCBI
|
45
|
Andley UP: Crystallins in the eye:
Function and pathology. Prog Retin Eye Res. 26:78–98. 2007.
View Article : Google Scholar
|
46
|
Losiewicz MK and Fort PE: Diabetes impairs
the neuroprotective properties of retinal alpha-crystallins. Invest
Ophthalmol Vis Sci. 52:5034–5042. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Heise EA, Marozas LM, Grafton SA, Green
KM, Kirwin SJ and Fort PE: Strain-independent increases of
crystallin proteins in the retina of type 1 diabetic rats. PLoS
One. 8:e825202013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kandpal RP, Rajasimha HK, Brooks MJ,
Nellissery J, Wan J, Qian J, Kern TS and Swaroop A: Transcriptome
analysis using next generation sequencing reveals molecular
signatures of diabetic retinopathy and efficacy of candidate drugs.
Mol Vis. 18:1123–1146. 2012.PubMed/NCBI
|
49
|
Fort PE, Freeman WM, Losiewicz MK, Singh
RS and Gardner TW: The retinal proteome in experimental diabetic
retinopathy: Up-regulation of crystallins and reversal by systemic
and periocular insulin. Mol Cell Proteomics. 8:767–779. 2009.
View Article : Google Scholar :
|
50
|
Yamamoto S, Yamashita A, Arakaki N, Nemoto
H and Yamazaki T: Prevention of aberrant protein aggregation by
anchoring the molecular chaperone αB-crystallin to the endoplasmic
reticulum. Biochem Biophys Res Commun. 455:241–245. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Gologorsky D, Thanos A and Vavvas D:
Therapeutic interventions against inflammatory and angiogenic
mediators in proliferative diabetic retinopathy. Mediators Inflamm.
2012:6294522012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang W, Liu H, Rojas M, Caldwell RW and
Caldwell RB: Anti-inflammatory therapy for diabetic retinopathy.
Immunotherapy. 3:609–628. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
King GL: The role of inflammatory
cytokines in diabetes and its complications. J Periodontol.
79:1527–1534. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Adamis AP: Is diabetic retinopathy an
inflammatory disease? Br J Ophthalmol. 86:363–365. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Martin PM, Roon P, Van Ells TK, Ganapathy
V and Smith SB: Death of retinal neurons in streptozotocin-induced
diabetic mice. Invest Ophthalmol Vis Sci. 45:3330–3336. 2004.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Howell SJ, Mekhail MN, Azem R, Ward NL and
Kern TS: Degeneration of retinal ganglion cells in diabetic dogs
and mice: Relationship to glycemic control and retinal capillary
degeneration. Mol Vis. 19:1413–1421. 2013.PubMed/NCBI
|
57
|
Joussen AM, Poulaki V, Mitsiades N, Cai
WY, Suzuma I, Pak J, Ju ST, Rook SL, Esser P, Mitsiades CS, et al:
Suppression of Fas-FasL-induced endothelial cell apoptosis prevents
diabetic blood-retinal barrier breakdown in a model of
streptozotocin-induced diabetes. FASEB J. 17:76–78. 2003.
|
58
|
Golias C, Tsoutsi E, Matziridis A,
Makridis P, Batistatou A and Charalabopoulos K: Review. Leukocyte
and endothelial cell adhesion molecules in inflammation focusing on
inflammatory heart disease. In Vivo. 21:757–769. 2007.PubMed/NCBI
|
59
|
Ugurlu N, Gerceker S, Yülek F, Ugurlu B,
Sarı C, Baran P and Çağil N: The levels of the circulating cellular
adhesion molecules ICAM-1, VCAM-1 and endothelin-1 and the
flow-mediated vasodilatation values in patients with type 1
diabetes mellitus with early-stage diabetic retinopathy. Intern
Med. 52:2173–2178. 2013. View Article : Google Scholar : PubMed/NCBI
|
60
|
Adamiec J and Oficjalska-Mlynczak J:
Contribution of selected cellular adhesion molecules and
proinflammatory cytokines in the pathogenesis of proliferative
diabetic retinopathy. Przegl Lek. 64:389–392. 2007.In Polish.
|
61
|
Khalfaoui T, Lizard G, Beltaief O, Colin
D, Ben Hamida J, Errais K, Ammous I, Zbiba W, Tounsi L, Zhioua R,
et al: Immunohistochemical analysis of cellular adhesion molecules
(ICAM-1, VCAM-1) and VEGF in fibrovascular membranes of patients
with proliferative diabetic retinopathy: Preliminary study. Pathol
Biol (Paris). 57:513–517. 2009. View Article : Google Scholar
|
62
|
Graves DT and Kayal RA: Diabetic
complications and dysregulated innate immunity. Front Biosci.
13:1227–1239. 2008. View
Article : Google Scholar
|
63
|
Asnaghi V, Gerhardinger C, Hoehn T,
Adeboje A and Lorenzi M: A role for the polyol pathway in the early
neuroretinal apoptosis and glial changes induced by diabetes in the
rat. Diabetes. 52:506–511. 2003. View Article : Google Scholar : PubMed/NCBI
|