1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Huang Z, Huang D, Ni S, Peng Z, Sheng W
and Du X: Plasma microRNAs are promising novel biomarkers for early
detection of colorectal cancer. Int J Cancer. 127:118–126. 2010.
View Article : Google Scholar
|
3
|
Gutman M and Fidler IJ: Biology of human
colon cancer metastasis. World J Surg. 19:226–234. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sasaki H, Miura K, Horii A, Kaneko N,
Fujibuchi W, Kiseleva L, Gu Z, Murata Y, Karasawa H, Mizoi T, et
al: Orthotopic implantation mouse model and cDNA microarray
analysis indicates several genes potentially involved in lymph node
metastasis of colorectal cancer. Cancer Sci. 99:711–719. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Sleeman JP: The lymph node as a bridgehead
in the metastatic dissemination of tumors. Cancer Res. 157:55–81.
2000.
|
6
|
Xu N, Qiu H and Ding Y: The relation
between DNA replication error and clinicopathological features of
colorectal carcinoma. Zhonghua Bing Li Xue Za Zhi. 27:359–361.
1998.In Chinese.
|
7
|
Lin Y, Buckhaults PJ, Lee JR, Xiong H,
Farrell C, Podolsky RH, Schade RR and Dynan WS: Association of the
actin-binding protein transgelin with lymph node metastasis in
human colorectal cancer. Neoplasia. 11:864–873. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Akagi T, Hijiya N, Inomata M, Shiraishi N,
Moriyama M and Kitano S: Visinin-like protein-1 overexpression is
an indicator of lymph node metastasis and poor prognosis in
colorectal cancer patients. Int J Cancer. 131:1307–1317. 2012.
View Article : Google Scholar
|
9
|
Toiyama Y, Yasuda H, Saigusa S, Tanaka K,
Inoue Y, Goel A and Kusunoki M: Increased expression of Slug and
Vimentin as novel predictive biomarkers for lymph node metastasis
and poor prognosis in colorectal cancer. Carcinogenesis.
34:2548–2557. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Siegel R, DeSantis C, Virgo K, Stein K,
Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al:
Cancer treatment and survivorship statistics, 2012. CA Cancer J
Clin. 62:220–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yue ZQ, Lui YP, Ruan JS, Zhou L and Lu Y:
Tumor-associated macrophages: A novel potential target for cancer
treatment. Chin Med J (Engl). 125:3305–3311. 2012.
|
12
|
Rigo A, Gottardi M, Zamò A, Mauri P,
Bonifacio M, Krampera M, Damiani E, Pizzolo G and Vinante F:
Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine
loop that is enhanced by CXCL12. Mol Cancer. 9:273–279. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wyckoff J, Wang W, Lin EY, Wang Y, Pixley
F, Stanley ER, Graf T, Pollard JW, Segall J and Condeelis J: A
paracine loop between tumor cells and macrophages is required for
tumor cell migration in mammary tumors. Cancer Res. 64:7022–7029.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Canioni D, Salles G, Mounier N, Brousse N,
Keuppens M, Morchhauser F, Lamy T, Sonet A, Rousselet MC, Foussard
C, et al: High numbers of tumor-associated macrophages have an
adverse prognostic value that can be circumvented by rituximab in
patients with follicular lymphoma enrolled onto the GELA-COELAMS
FL-2000 trial. J Clin Oncol. 26:440–446. 2008. View Article : Google Scholar
|
15
|
Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar
MH, Fukumoto M, Shimura T, Ohtake Y, Ohkubo Y, Mori S, Uchiyama Y,
et al: Enhancement of autophagy is a potential modality for tumors
refractory to radiotherapy. Cell Death Dis. 2:e1772011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Barker HE, Paget JT, Khan AA and
Harrington KJ: The tumour microenvironment after radiotherapy:
Mechanisms of resistance and recurrence. Nat Rev Cancer.
15:409–425. 2015. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Mizushima N: Autophagy: Process and
function. Genes Dev. 21:2861–2873. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Allavena P, Sica A, Solinas G, Porta C and
Mantovani A: The inflammatory micro-environment in tumor
progression: The role of tumor-associated macrophages. Crit Rev
Oncol Hematol. 66:1–9. 2008. View Article : Google Scholar
|
19
|
Stout RD, Jiang C, Matta B, Tietzel I,
Watkins SK and Suttles J: Macrophages sequentially change their
functional phenotype in response to changes in microenvironment
influences. J Immunol. 175:342–349. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sica A, Schioppa T, Mantovani A and
Allavena P: Tumor-associated macrophages are a distinct M2
polarised population promoting tumor progression: Potential targets
of anti-cancer therapy. Eur J Cancer. 42:717–727. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gocheva V, Wang H-W, Gadea BB, Shree T,
Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces
cathepsin protease activity in tumor-associated macrophages to
promote cancer growth and invasion. Genes Dev. 24:241–255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Pander J, Heusinkveld M, der Straaten TV,
Jordanova ES, Baak-Pablo R, Gelderblom H, Morreau H, van der Burg
SH, Guchelaar HJ and van Hall T: Activation of tumor-promoting type
2 macrophages by EGFR-targeting antibody Cetuximab. Clin Cancer
Res. 17:5668–5673. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Coffelt SB, Hughes R and Lewis CE:
Tumor-associated macrophages: Effectors of angiogenesis and tumor
progression. Biochim Biophys Acta. 1796:11–18. 2011.
|
24
|
Bingle L, Lewis CE, Corke KP, Reed MW and
Brown NJ: Macrophages promote angiogenesis in human breast tumour
spheroids in vivo. Br J Cancer. 94:101–107. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Karar J and Maity A: Modulating the tumor
microenvironment to increase radiation responsiveness. Cancer Biol
Ther. 8:1994–2001. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Amaravadi R, Lippincott Schwartz J, Yin X,
Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT and White E:
Principles and current strategies for targeting autophagy for
cancer treatment. Clin Cancer Res. 17:654–666. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tan SH, Shui GH, Zhou J, Li JJ, Bay BH,
Wenk MR and Shen HM: Induction of autophagy by palmitic acid via
protein Kinase C-mediated signaling pathway independent of mTOR. J
Biol Chem. 287:14364–14376. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kanematsu S, Uehara N, Miki H, Yoshizawa
K, Kawanaka A, Yuri T and Tsubura A: Autophagy inhibition enhances
sulforaphane-induced apoptosis in human breast cancer cells.
Anticancer Res. 30:3381–3390. 2010.PubMed/NCBI
|
29
|
Essafi-Benkhadir K, Refai A, Riahi I,
Fattouch S, Karoui H and Essafi M: Quince (Cydonia oblonga Miller)
peel polyphenols modulate LPS-induced inflammation in human
THP-1-derived macrophages through NF-κB, p38MAPK and Akt
inhibition. Biochem Biophys Res Commun. 418:180–185. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Spencer M, Yao-Borengasser A, Unal R,
Rasouli N, Gurley CM, Zhu B, Peterson CA and Kern PA: Adipose
tissue macrophages in insulin-resistant subjects are associated
with collagen VI and fibrosis and demonstrate alternative
activation. Am J Physiol Endocrinol Metab. 299:E1016–E1027. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Qin Z: The use of THP-1 cells as a model
for mimicking the function and regulation of monocytes and
macrophages in the vasculature atherosclerosis. Proc Natl Acad Sci
USA. 221:2–11. 2012.
|
32
|
Zheng LD, Xiong ZF, Zhu JW and Wang ZH:
Effects of Smac gene over-expression on the radiotherapeutic
sensitivities of cervical cancer cellline HeLa. Chin Med J (Engl).
8:226–30. 2008.
|
33
|
Giagkousiklidis S, Vogler M, Westhoff MA,
Kasperczyk H, Debati KM and Fulda S: Sensitization for
gamma-irradiation-induced apoptosis by second mitochondria-derived
activator of caspase. Cancer Res. 65:10502–10513. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kohli M, Yu J, Seaman C, Bardelli A,
Kinzler KW, Vogelstein B, Lengauer C and Zhang L:
SMAC/Diablo-dependent apoptosis induced by nonsteroidal
antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl
Acad Sci USA. 101:16897–16902. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sreevalsan S, Jutooru I, Chadalapaka G,
Walker M and Safe S: 1,1-Bis(3′-indolyl)-1-(p-bromophenyl)methane
and related compounds repress survivin and decrease γ-radiation
induced survivin in colon and pancreatic cancer cells. Int J Oncol.
35:1191–1199. 2009.PubMed/NCBI
|
36
|
Yu L-W and Ma X-T: Stat3 signaling pathway
regulates the expression of Survivin and promotes apoptosis of
human colon cancer cells. Zhong Hua Shi Yan Wai Ke Za Zhi She.
3:291–293. 2008.In Chinese.
|
37
|
Rödel C, Haas J, Groth A, Grabenbauer GG,
Sauer R and Rödel F: Spontaneous and radiation-induced apoptosis in
colorectal carcinoma cells with different intrinsic
radiosensitivities: Survivin as a radioresistance factor. Int J
Radiat Oncol Biol Phys. 55:1341–1347. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Teng Z, Yu L and Zhang J:
Tumor-associated macrophages affect biological behavior of SW480
cell-line. Acad Med. 33:71–75. 2011.
|