1
|
Khoshnood B, Lelong N, Houyel L, Thieulin
AC, Jouannic JM, Magnier S, Delezoide AL, Magny JF, Rambaud C,
Bonnet D, et al: Prevalence, timing of diagnosis and mortality of
newborns with congenital heart defects: A population-based study.
Heart. 98:1667–1673. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hoffman JIe: The global burden of
congenital heart disease. Cardiovasc J Afr. 24:141–145. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lin CJ, Lin CY, Chen CH, Zhou B and Chang
CP: Partitioning the heart: Mechanisms of cardiac septation and
valve development. Development. 139:3277–3299. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Van der Bom T, Zomer AC, Zwinderman AH,
Meijboom FJ, Bouma BJ and Mulder BJ: The changing epidemiology of
congenital heart disease. Nat Rev Cardiol. 8:50–60. 2011.
View Article : Google Scholar
|
5
|
Brennan P and Young ID: Congenital heart
malformations: Aetiology and associations. Semin Neonatol. 6:17–25.
2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Xiang R, Lei H, Chen M, Li Q, Sun H, Ai J,
Chen T, Wang H, Fang Y and Zhou Q: The miR-17-92 cluster regulates
FOG-2 expression and inhibits proliferation of mouse embryonic
cardiomyocytes. Braz J Med Biol Res. 45:131–138. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sluijter JP, van Mil A, van Vliet P, Metz
CH, Liu J, Doevendans PA and Goumans MJ: MicroRNA-1 and -499
regulate differentiation and proliferation in human-derived
cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol.
30:859–868. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y and Kowdley KV: MicroRNAs in common
human diseases. Genomics Proteomics Bioinformatics. 10:246–253.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen J and Wang DZ: microRNAs in
cardiovascular development. J Mol Cell Cardiol. 52:949–957. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao Y, Ransom JF, Li A, Vedantham V, von
Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ and
Srivastava D: Dysregulation of cardiogenesis, cardiac conduction
and cell cycle in mice lacking miRNA-1-2. Cell. 129:303–317. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu and Olson EN: MicroRNA regulatory
networks in cardiovascular development. Dev Cell. 18:510–525. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao Y, Samal E and Srivastava D: Serum
response factor regulates a muscle-specific microRNA that targets
Hand2 during cardiogenesis. Nature. 436:214–220. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu N, Bezprozvannaya S, Williams AH, Qi
X, Richardson JA, Bassel-Duby R and Olson EN: microRNA-133a
regulates cardiomyocyte proliferation and suppresses smooth muscle
gene expression in the heart. Genes Dev. 22:3242–3254. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Meder B, Katus HA and Rottbauer W: Right
into the heart of microRNA-133a. Genes Dev. 22:3227–3231. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian
L, Zhu C, Hu X, Li M, Guo X, et al: Identification of maternal
serum microRNAs as novel non-invasive biomarkers for prenatal
detection of fetal congenital heart defects. Clin Chim Acta.
424:66–72. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nguyen T, Kuo C, Nicholl MB, et al: Low
miR-29c levels associated with TRG hypermethylation and melanoma
progression. RNA Biology. 8:3572011.
|
19
|
Wang CM, Wang Y, Fan CG, Xu FF, Sun WS,
Liu YG and Jia JH: miR-29c targets TNFAIP3, inhibits cell
proliferation and induces apoptosis in hepatitis B virus-related
hepatocellular carcinoma. Biochem Biophys Res Commun. 411:586–592.
2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou K, Yu Z, Yi S, Li Z, An G, Zou D, Qi
J, Zhao Y and Qiu L: miR-29c down-regulation is associated with
disease aggressiveness and poor survival in Chinese patients with
chronic lymphocytic leukemia. Leuk Lymphoma. 55:1544–1550. 2014.
View Article : Google Scholar
|
21
|
Wang Y, Li Y, Sun J, Wang Q, Sun C, Yan Y,
Yu L, Cheng D, An T, Shi C, et al: Tumor-suppressive effects of
miR-29c on gliomas. Neuroreport. 24:637–645. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu F, Zhang Q, Cheng W, Zhang Z, Wang J
and Ge J: Effect of miR-29b-1* and miR-29c knockdown on
cell growth of the bladder cancer cell line T24. J Int Med Res.
41:1803–1810. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zeng X, Xiang J, Wu M, Xiong W, Tang H,
Deng M, Li X, Liao Q, Su B and Luo Z: Circulating miR-17, miR-20a,
miR-29c and miR-223 combined as non-invasive biomarkers in
nasopharyngeal carcinoma. Plos One. 7:e463672012. View Article : Google Scholar
|
24
|
Matsuo M, Nakada C, Tsukamoto Y, Noguchi
T, Uchida T, Hijiya N, Matsuura K and Moriyama M: MiR-29c is
down-regulated in gastric carcinomas and regulates cell
proliferation by targeting RCC2. Mol Cancer. 12:152013. View Article : Google Scholar
|
25
|
Kluiver J, Slezak-Prochazka I,
Smigielska-Czepiel K, Halsema N, Kroesen BJ and van den Berg A:
Generation of miRNA sponge constructs. Methods. 58:113–117. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ebert MS, Neilson JR and Sharp PA:
MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian
cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pfaffl MW: A new mathematical model for
relative quantification in real-time RT-PCR. Nucleic Acids Res.
29:e452001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Van der Heyden MA and Defize LH: Twenty
one years of P19 cells: What an embryonal carcinoma cell line
taught us about cardiomyocyte differentiation. Cardiovasc Res.
58:292–302. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mukherji S, Ebert MS, Zheng GX, Tsang JS,
Sharp PA and van Oudenaarden A: MicroRNAs can generate thresholds
in target gene expression. Nat Genet. 43:854–859. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tay FC, Lim JK, Zhu H, Hin LC and Wang S:
Using artificial microRNA sponges to achieve microRNA
loss-of-function in cancer cells. Adv Drug Deliv Rev. 81:117–127.
2015. View Article : Google Scholar
|
31
|
Ebert MS and Sharp PA: MicroRNA sponges:
Progress and possibilities. RNA. 16:2043–2050. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Marvin MJ, Di Rocco G, Gardiner A, Bush SM
and Lassar AB: Inhibition of Wnt activity induces heart formation
from posterior mesoderm. Genes Dev. 15:316–327. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Eisenberg LM and Eisenberg CA: Wnt signal
transduction and the formation of the myocardium. Dev Biol.
293:305–315. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ueno S, Weidinger G, Osugi T, Kohn AD,
Golob JL, Pabon L, Reinecke H, Moon RT and Murry CE: Biphasic role
for Wnt/beta-catenin signaling in cardiac specification in
zebrafish and embryonic stem cells. Proc Natl Acad Sci USA.
104:9685–9690. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Qyang Y, Martin-Puig S, Chiravuri M, Chen
S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A, et al: The
renewal and differentiation of Isl1+ cardiovascular progenitors are
controlled by a Wnt/beta-catenin pathway. Cell Stem Cell.
1:165–179. 2007. View Article : Google Scholar
|
36
|
de la Pompa JL and Epstein JA:
Coordinating tissue interactions: Notch signaling in cardiac
development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Caliceti C, Nigro P, Rizzo P and Ferrari
R: ROS, Notch and Wnt signaling pathways: Crosstalk between three
major regulators of cardiovascular biology. Biomed Res Int.
2014:3187142014. View Article : Google Scholar
|
38
|
Zeng YA and Nusse R: Wnt proteins are
self-renewal factors for mammary stem cells and promote their
long-term expansion in culture. Cell Stem Cell. 6:568–577. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gittenberger-de Groot AC, Bartelings MM,
Poelmann RE, Haak MC and Jongbloed MR: Embryology of the heart and
its impact on understanding fetal and neonatal heart disease. Semin
Fetal Neonatal Med. 18:237–244. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Biala AK and Kirshenbaum LA: The interplay
between cell death signaling pathways in the heart. Trends
Cardiovasc Med. 24:325–331. 2014. View Article : Google Scholar : PubMed/NCBI
|