1
|
Jaakkola P, Mole DR, Tian YM, Wilson MI,
Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji
M, Schofield CJ, et al: Targeting of HIF-alpha to the von
Hippel-Lindau ubiquitylation complex by O2-regulated prolyl
hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ockaili R, Salloum F, Natarajan R, Jones
DG, Fisher BJ, Ghosh S, Fowler AA and Kukreja RC: Dimethyloxallyl
glycine-A competitive inhibitor of prolyl hydroxylases induces
cardioprotective effect via hypoxia inducible factor-1 alpha
stabilization in rabbits. Circulation. 108:219. 2003.
|
3
|
Ding H, Gao YS, Wang Y, Hu C, Sun Y and
Zhang CQ: Dimethyloxaloylglycine increases the bone healing
capacity of adipose-derived stem cells by promoting osteogenic
differentiation and angiogenic potential. Stem Cells Dev.
23:990–1000. 2014. View Article : Google Scholar :
|
4
|
Song YR, You SJ, Lee YM, Chin HJ, Chae DW,
Oh YK, Joo KW, Han JS and Na KY: Activation of hypoxia-inducible
factor attenuates renal injury in rat remnant kidney. Nephrol Dial
Transplant. 25:77–85. 2010. View Article : Google Scholar
|
5
|
Milkiewicz M, Pugh CW and Egginton S:
Inhibition of endogenous HIF inactivation induces angiogenesis in
ischaemic skeletal muscles of mice. J Physiol. 560:21–26. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yuan Q, Bleiziffer O, Boos AM, Sun J,
Brandl A, Beier JP, Arkudas A, Schmitz M, Kneser U and Horch RE:
PHDs inhibitor DMOG promotes the vascularization process in the AV
loop by HIF-1a up-regulation and the preliminary discussion on its
kinetics in rat. BMC Biotechnol. 14:1122014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nagel S, Papadakis M, Chen R, Hoyte LC,
Brooks KJ, Gallichan D, Sibson NR, Pugh C and Buchan AM:
Neuroprotection by dimethyloxalylglycine following permanent and
transient focal cerebral ischemia in rats. J Cereb Blood Flow
Metab. 31:132–143. 2011. View Article : Google Scholar :
|
8
|
Liu XB, Wang JA, Ji XY, Yu SP and Wei L:
Preconditioning of bone marrow mesenchymal stem cells by prolyl
hydroxylase inhibition enhances cell survival and angiogenesis in
vitro and after transplantation into the ischemic heart of rats.
Stem Cell Res Ther. 5:1112014. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Beyer Nardi N and da Silva Meirelles L:
Mesenchymal stem cells: Isolation, in vitro expansion and
characterization. Handb Exp Pharmacol. 174:249–282. 2006.
View Article : Google Scholar
|
10
|
Deans RJ and Moseley AB: Mesenchymal stem
cells: Biology and potential clinical uses. Exp Hematol.
28:875–884. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sanchez-Ramos J, Song S, Cardozo-Pelaez F,
Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W,
Patel N, et al: Adult bone marrow stromal cells differentiate into
neural cells in vitro. Exp Neurol. 164:247–256. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bianco P, Riminucci M, Gronthos S and
Robey PG: Bone marrow stromal stem cells: Nature, biology, and
potential applications. Stem Cells. 19:180–192. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakagami H, Morishita R, Maeda K, Kikuchi
Y, Ogihara T and Kaneda Y: Adipose tissue-derived stromal cells as
a novel option for regenerative cell therapy. J Atheroscler Thromb.
13:77–81. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chunmeng S and Tianmin C: Skin: A
promising reservoir for adult stem cell populations. Med
Hypotheses. 62:683–688. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
De Bari C, Dell'Accio F, Vandenabeele F,
Vermeesch JR, Raymackers JM and Luyten FP: Skeletal muscle repair
by adult human mesenchymal stem cells from synovial membrane. J.
Cell Biol. 160:909–918. 2003. View Article : Google Scholar
|
16
|
Pierdomenico L, Bonsi L, Calvitti M,
Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C,
Alviano F, Fossati V, et al: Multipotent mesenchymal stem cells
with immunosuppressive activity can be easily isolated from dental
pulp. Transplantation. 80:836–842. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yamada Y, Fujimoto A, Ito A, Yoshimi R and
Ueda M: Cluster analysis and gene expression profiles: A cDNA
microarray system-based comparison between human dental pulp stem
cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue
engineering cell therapy. Biomaterials. 27:3766–3781. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL
and Chen TH: Isolation of multipotent mesenchymal stem cells from
umbilical cord blood. Blood. 103:1669–1675. 2004. View Article : Google Scholar
|
19
|
Pitchford SC, Hahnel MJ, Jones CP and
Rankin SM: Troubleshooting: Quantification of mobilization of
progenitor cell subsets from bone marrow in vivo. J Pharmacol
Toxicol Methods. 61:113–121. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Alhadlaq A and Mao JJ: Mesenchymal stem
cells: Isolation and therapeutics. Stem Cells Dev. 13:436–448.
2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lazarus HM, Haynesworth SE, Gerson SL and
Caplan AI: Human bone marrow-derived mesenchymal (stromal)
progenitor cells (MPCs) cannot be recovered from peripheral blood
progenitor cell collections. J Hematother. 6:447–455.
1997.PubMed/NCBI
|
22
|
Wexler SA, Donaldson C, Denning-Kendall P,
Rice C, Bradley B and Hows JM: Adult bone marrow is a rich source
of human mesenchymal 'stem' cells but umbilical cord and mobilized
adult blood are not. Br J Haematol. 121:368–374. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Roufosse CA, Direkze NC, Otto WR and
Wright NA: Circulating mesenchymal stem cells. Int J Biochem Cell
Biol. 36:585–597. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Neth P, Ciccarella M, Egea V, Hoelters J,
Jochum M and Ries C: Wnt signaling regulates the invasion capacity
of human mesenchymal stem cells. Stem Cells. 24:1892–1903. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kumar S and Ponnazhagan S: Mobilization of
bone marrow mesenchymal stem cells in vivo augments bone healing in
a mouse model of segmental bone defect. Bone. 50:1012–1018. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Deng J, Zou Z, Zhou T, Ai G, Wang J, Dong
S and Su S: The mobilization of rat mesenchymal stem cells into
peripheral blood by LiCL and its potency differentiation. Chinese
Science Bulletin. 53:2632–2638. 2008.
|
27
|
Liu W, Yu Q, Liu L, Zhou L and Hu S:
Effect of prolylhydroxylase inhibitor on mobilization of
mesenchymal stem cells in mice. Zhejiang Zhongyiyaodaxue Xuebao.
37:1371–1376. 2013.In Chinese.
|
28
|
Hu S, Yu Q, Liu L and Ge T: Mechanism of
HIF-1 signaling pathway in mediating MSCs mobilization with DMOG.
Zhongguo Bijiaoyixue Zazhi. 25:9–14. 2014.In Chinese.
|
29
|
National Research Council: Guide for the
care and use of laboratory animals. 7th edition. National Academies
Press; Washington, DC: 1996
|
30
|
Campagnoli C, Roberts IA, Kumar S, Bennett
PR, Bellantuono I and Fisk NM: Identification of mesenchymal
stem/progenitor cells in human first-trimester fetal blood, liver,
and bone marrow. Blood. 98:2396–2402. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu L, Yu Q, Lin J, Lai X, Cao W, Du K,
Wang Y, Wu K, Hu Y, Zhang L, et al: Hypoxia-inducible factor-1α is
essential for hypoxia-induced mesenchymal stem cell mobilization
into the peripheral blood. Stem Cells Dev. 20:1961–1971. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ivan M, Kondo K, Yang H, Kim W, Valiando
J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha
targeted for VHL-mediated destruction by proline hydroxylation:
Implications for O2 sensing. Science. 292:464–468. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Noort WA, Oerlemans MIFJ, Rozemuller H,
Feyen D, Jaksani S, Stecher D, Naaijikens B, Martens AC, Bühring
HJ, Doevendans PA and Sluijter JPG: Human versus porcine
mesenchymal stromal cells: Phenotype, differentiation potential,
immunomodulation and cardiac improvement after transplantation. J
Cell Mol Med. 16:1827–1839. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lv FJ, Tuan RS, Cheung KM and Leung VY:
Concise review: The surface markers and identity of human
mesenchymal stem cells. Stem Cells. 32:1408–1419. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sordi V, Malosio ML, Marchesi F, Mercalli
A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi
F, et al: Bone marrow mesenchymal stem cells express a restricted
set of functionally active chemokine receptors capable of promoting
migration to pancreatic islets. Blood. 106:419–427. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Laudes M: Role of WNT signalling in the
determination of human mesenchymal stem cells into preadipocytes. J
Mol Endocrinol. 46:R65–R72. 2011.PubMed/NCBI
|
38
|
Cristancho AG and Lazar MA: Forming
functional fat: A growing understanding of adipocyte
differentiation. Nat Rev Mol. Cell Biol. 12:722–734. 2011.
|
39
|
Lin GL and Hankenson KD: Integration of
BMP, Wnt, and notch signaling pathways in osteoblast
differentiation. J Cell Biochem. 112:3491–3501. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang W, Li B, Yang J, Xin L, Li Y, Yin H,
Qi Y, Jiang Y, Ouyang H and Gao C: The restoration of
full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded
PLGA/fibrin gel constructs. Biomaterials. 31:8964–8973. 2010.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hirao M, Tamai N, Tsumaki N, Yoshikawa H
and Myoui A: Oxygen tension regulates chondrocyte differentiation
and function during endochondral ossification. J Biol Chem.
281:31079–31092. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Guo W, Qian L, Zhang J, Zhang W, Morrison
A, Hayes P, Wilson S, Chen T and Zhao J: Sirt1 overexpression in
neurons promotes neurite outgrowth and cell survival through
inhibition of the mTOR signaling. J Neurosci Res. 89:1723–1736.
2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Schultz K, Murthy V, Tatro JB and Beasley
D: Prolyl hydroxylase 2 deficiency limits proliferation of vascular
smooth muscle cells by hypoxia-inducible factor-1{alpha}-dependent
mechanisms. Am. J Physiol Lung Cell Mol Physiol. 296:L921–L927.
2009. View Article : Google Scholar
|
44
|
Liu XB, Wang JA, Ogle ME and Wei L: Prolyl
hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal
stem cell survival. J Cell Biochem. 106:903–911. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu Q, Liu L, Lin J, Wang Y, Xuan X, Guo Y
and Hu S: SDF-1α/CXCR4 axis mediates the migration of mesenchymal
stem cells to the hypoxic-ischemic brain lesion in a rat model.
Cell J. 16:440–447. 2015.PubMed/NCBI
|
46
|
Peled A, Petit I, Kollet O, Magid M,
Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, et al:
Dependence of human stem cell engraftment and repopulation of
NOD/SCID mice on CXCR4. Science. 283:845–848. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang Y, Fu W, Zhang S, He X, Liu Z, Gao D
and Xu T: CXCR-7 receptor promotes SDF-1α-induced migration of bone
marrow mesenchymal stem cells in the transient cerebral
ischemia/reper-fusion rat hippocampus. Brain Res. 1575:78–86. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Hu C, Yong X, Li C, Lü M, Liu D, Chen L,
Hu L, Teng M, Zhang D, Fan Y and Liang G: CXCL12/CXCR4 axis
promotes mesenchymal stem cell mobilization to burn wounds and
contributes to wound repair. J Surg Res. 183:427–434. 2013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Doorn J, Moll G, Le Blanc K, van
Blitterswijk C and de Boer J: Therapeutic applications of
mesenchymal stromal cells: Paracrine effects and potential
improvements. Tissue Eng Part B Rev. 18:101–115. 2012. View Article : Google Scholar
|
50
|
Ng F, Boucher S, Koh S, Sastry KS, Chase
L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS and Tanavde
V: PDGF, TGF-beta, and FGF signaling is important for
differentiation and growth of mesenchymal stem cells (MSCs):
Transcriptional profiling can identify markers and signaling
pathways important in differentiation of MSCs into adipogenic,
chondrogenic, and osteogenic lineages. Blood. 112:295–307. 2008.
View Article : Google Scholar : PubMed/NCBI
|