1
|
Guignabert C and Dorfmuller P: Pathology
and pathobiology of pulmonary hypertension. Semin Respir Crit Care
Med. 34:551–559. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
McMurtry MS, Bonnet S, Wu X, Dyck JR,
Haromy A, Hashimoto K and Michelakis ED: Dichloroacetate prevents
and reverses pulmonary hypertension by inducing pulmonary artery
smooth muscle cell apoptosis. Circ Res. 95:830–840. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang J, Weigand L, Lu W, Sylvester JT,
Semenza GL and Shimoda LA: Hypoxia inducible factor 1 mediates
hypoxia-induced TRPC expression and elevated intracellular
Ca2+ in pulmonary arterial smooth muscle cells. Circ
Res. 98:1528–1537. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP
and Wang X: Effects of mitochondrial potassium channel and membrane
potential on hypoxic human pulmonary artery smooth muscle cells. Am
J Respir Cell Mol Biol. 42:661–666. 2010. View Article : Google Scholar
|
5
|
Chen C, Chen C, Wang Z, Wang L, Yang L,
Ding M, Ding C, Sun Y, Lin Q, Huang X, et al: Puerarin induces
mitochondria-dependent apoptosis in hypoxic human pulmonary
arterial smooth muscle cells. PLoS One. 7:e341812012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yung GL: Evaluation of patients with
pulmonary hypertension for lung transplantation. Textbook of
Pulmonary Vascular Disease. Yuan JXJ, Garcia JGN, Hales CA, Rich S,
Archer SL and West JB: Springer; New York, NY: pp. 1593–1598. 2011,
View Article : Google Scholar
|
7
|
Archer SL, Gomberg-Maitland M, Maitland
ML, Rich S, Garcia JG and Weir EK: Mitochondrial metabolism, redox
signaling and fusion: A mitochondria-ROS-HIF-1alpha-Kv1.5
O2-sensing pathway at the intersection of pulmonary hypertension
and cancer. AM J Physiol Heart Circ Physiol. 294:H570–H578. 2008.
View Article : Google Scholar
|
8
|
Park WS, Firth AL, Han J and Ko EA:
Patho-, physiological roles of voltage-dependent K+
channels in pulmonary arterial smooth muscle cells. J Smooth Muscle
Res. 46:89–105. 2010. View Article : Google Scholar
|
9
|
Altieri DC: Validating survivin as a
cancer therapeutic target. Nature Reviews Cancer. 3:46–54. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zyada MM: Relationship of survivin to
clinical drug resistance in Burkitt's lymphoma of the head and neck
region. Med Oncol. 28:1565–1569. 2011. View Article : Google Scholar
|
11
|
Dohi T, Beltrami E, Wall NR, Plescia J and
Altieri DC: Mitochondrial survivin inhibits apoptosis and promotes
tumorigenesis. J Clin Invest. 114:1117–1127. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Salvesen GS and Duckett CS: IAP proteins:
Blocking the road to death's door. Nat Rev Mol Cell Biol.
3:401–410. 2002. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Hingorani P, Dickman P, Garcia-Filion P,
White-Collins A, Kolb EA and Azorsa DO: BIRC5 expression is a poor
prognostic marker in ewing sarcoma. Pediatr Blood Cancer. 60:35–40.
2013. View Article : Google Scholar
|
14
|
McMurtry MS, Archer SL, Altieri DC, Bonnet
S, Haromy A, Harry G, Bonnet S, Puttagunta L and Michelakis ED:
Gene therapy targeting survivin selectively induces pulmonary
vascular apoptosis and reverses pulmonary arterial hypertension. J
Clin Invest. 115:1479–1491. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Ryan BM, O'Donovan N and Duffy MJ:
Survivin: A new target for anti-cancer therapy. Cancer Treat Rev.
35:553–562. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yamanaka K, Nakata M, Kaneko N, Fushiki H,
Kita A, Nakahara T, Koutoku H and Sasamata M: YM155, a selective
survivin suppressant, inhibits tumor spread and prolongs survival
in a spontaneous metastatic model of human triple negative breast
cancer. Int J Oncol. 39:569–575. 2011.PubMed/NCBI
|
17
|
Tao YF, Lu J, Du XJ, Sun LC, Zhao X, Peng
L, Cao L, Xiao PF, Pang L, Wu D, et al: Survivin selective
inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC
Cancer. 12:6192012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu B, Fan Z, Li J, Liu Y, Wang N, Wang D,
Liu Y and Zhang B: Expression of survivin in pulmonary artery of
rats exposed to normoxia and hypoxia. International Journal of
Respiration. 33:994–998. 2013.
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2− ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
20
|
Paulin R, Courboulin A, Meloche J, et al:
Signal transducers and activators of transcription-3/pim1 axis
plays a critical role in the pathogenesis of human pulmonary
arterial hypertension. Circulation. 123:1205–1215. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Geraci MW, Moore M, Gesell T, Yeager ME,
Alger L, Golpon H, Gao B, Loyd JE, Tuder RM and Voelkel NF: Gene
expression patterns in the lungs of patients with primary pulmonary
hypertension: A gene microarray analysis. Circ Res. 88:555–562.
2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Altieri DC: Targeting survivin in cancer.
Cancer Lett. 332:225–228. 2013. View Article : Google Scholar :
|
23
|
Stauber RH, Mann W and Knauer SK: Nuclear
and cytoplasmic survivin: Molecular mechanism, prognostic and
therapeutic potential. Cancer Res. 67:5999–6002. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Paulin R, Meloche J, Jacob MH, Bisserier
M, Courboulin A and Bonnet S: Dehydroepiandrosterone inhibits the
Src/STAT3 constitutive activation in pulmonary arterial
hypertension. Am J Physiol Heart Circ Physiol. 301:H1798–H1809.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Marcos E, Fadel E, Sanchez O, Humbert M,
Dartevelle P, Simonneau G, Hamon M, Adnot S and Eddahibi S:
Serotonin-induced smooth muscle hyperplasia in various forms of
human pulmonary hypertension. Circ Res. 94:1263–1270. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ekhterae D, Platoshyn O, Krick S, Yu Y,
McDaniel SS and Yuan JX: Bcl-2 decreases voltage-gated
K+ channel activity and enhances survival in vascular
smooth muscle cells. Am J Physiol Cell Physiol. 281:C157–C165.
2001.PubMed/NCBI
|
27
|
Reid L: Vascular remodeling. The Pulmonary
Circulation: Normal and Abnormal Mechansimc, Management and the
National Registry. Fishman A: University of Pennsylvania Press;
Philadelphia, PA: pp. p2641990
|
28
|
Nakahara T, Kita A, Yamanaka K, Mori M,
Amino N, Takeuchi M, Tominaga F, Kinoyama I, Matsuhisa A, Kudou M
and Sasamata M: Broad spectrum and potent antitumor activities of
YM155, a novel small-molecule survivin suppressant, in a wide
variety of human cancer cell lines and xenograft models. Cancer
Sci. 102:614–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mandegar M, Fung YC, Huang W, Remillard
CV, Rubin LJ and Yuan JX: Cellular and molecular mechanisms of
pulmonary vascular remodeling: Role in the development of pulmonary
hypertension. Microvasc Res. 68:75–103. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fernandez RA, Sundivakkam P, Smith KA,
Zeifman AS, Drennan AR and Yuan JX: Pathogenic role of
store-operated and receptor-operated ca(2+) channels in
pulmonary arterial hypertension. J Signal Transduct.
2012:9514972012. View Article : Google Scholar
|
31
|
Gurbanov E and Shiliang X: The key role of
apoptosis in the pathogenesis and treatment of pulmonary
hypertension. Eur J Cardiothorac Surg. 30:499–507. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Michelakis ED, McMurtry MS, Wu XC, Dyck
JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R and
Archer SL: Dichloroacetate, a metabolic modulator, prevents and
reverses chronic hypoxic pulmonary hypertension in rats: Role of
increased expression and activity of voltage-gated potassium
channels. Circulation. 105:244–250. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moudgil R, Michelakis ED and Archer SL:
The role of K+ channels in determining pulmonary
vascular tone, oxygen sensing, cell proliferation and apoptosis:
Implications in hypoxic pulmonary vasoconstriction and pulmonary
arterial hypertension. Microcirculation. 13:615–632. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sweeney M and Yuan JX: Hypoxic pulmonary
vasoconstriction: Role of voltage-gated potassium channels. Respir
Res. 1:40–48. 2000. View
Article : Google Scholar
|
35
|
Pozeg ZI, Michelakis ED, McMurtry MS,
Thébaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G,
et al: In vivo gene transfer of the O2-sensitive
potassium channel Kv1. 5 reduces pulmonary hypertension and
restores hypoxic pulmonary vasoconstriction in chronically hypoxic
rats. Circulation. 107:2037–2044. 2003. View Article : Google Scholar : PubMed/NCBI
|