1
|
Murray CJ, Vos T, Lozano R, Naghavi M,
Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S,
et al: Disability-adjusted life years (DALYs) for 291 diseases and
injuries in 21 regions, 1990–2010: A systematic analysis for the
Global Burden of Disease Study 2010. Lancet. 380:2197–2223. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Kyaw T, Tay C, Khan A, Dumouchel V, Cao A,
To K, Kehry M, Dunn R, Agrotis A, et al: Conventional B2 B cell
depletion ameliorates whereas its adoptive transfer aggravates
atherosclerosis. J Immunol. 185:4410–4419. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Clement M, Guedj K, Andreata F, Morvan M,
Bey L, Khallou-Laschet J, Gaston AT, Delbosc S, Alsac JM, Bruneval
P, et al: Control of the T follicular helper-germinal center B-cell
axis by CD8+ regulatory T cells limits atherosclerosis
and tertiary lymphoid organ development. Circulation. 131:560–570.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Paigen B, Morrow A, Holmes PA, Mitchell D
and Williams A: Quantitative assessment of atherosclerotic lesions
in mice. Atherosclerosis. 68:231–240. 1987. View Article : Google Scholar : PubMed/NCBI
|
5
|
Thorp E, Cui D, Schrijvers DM, Kuriakose G
and Tabas I: Mertk receptor mutation reduces efferocytosis
efficiency and promotes apoptotic cell accumulation and plaque
necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler
Thromb Vasc Biol. 28:1421–1428. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tsiantoulas D, Diehl CJ, Witztum JL and
Binder CJ: B cells and humoral immunity in atherosclerosis. Circ
Res. 114:1743–1756. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kyaw T, Tay C, Krishnamurthi S, Kanellakis
P, Agrotis A, Tipping P, Bobik A and Toh BH: B1a B lymphocytes are
atheroprotective by secreting natural IgM that increases IgM
deposits and reduces necrotic cores in atherosclerotic lesions.
Circ Res. 109:830–840. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kyaw T, Tay C, Hosseini H, Kanellakis P,
Gadowski T, MacKay F, Tipping P, Bobik A and Toh BH: Depletion of
B2 but not B1a B cells in BAFF receptor-deficient ApoE mice
attenuates atherosclerosis by potently ameliorating arterial
inflammation. PLoS One. 7:e293712012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ait-Oufella H, Herbin O, Bouaziz JD,
Binder CJ, Uyttenhove C, Laurans L, Taleb S, Van Vré E, Esposito B,
Vilar J, et al: B cell depletion reduces the development of
atherosclerosis in mice. J Exp Med. 207:1579–1587. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Janeway CA Jr, Travers P, Walport M and
Shlomchik MJ: Immunobiology. 5th edition. Garland Science; New
York: 2001
|
11
|
Sage AP and Mallat Z: Multiple potential
roles for B cells in atherosclerosis. Ann Med. 46:297–303. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Cerutti A, Cols M and Puga I: Marginal
zone B cells: Virtues of innate-like antibody-producing
lymphocytes. Nat Rev Immunol. 13:118–132. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tsiantoulas D, Sage AP, Mallat Z and
Binder CJ: Targeting B cells in atherosclerosis: Closing the gap
from bench to bedside. Arterioscler Thromb Vasc Biol. 35:296–302.
2015. View Article : Google Scholar
|
14
|
Thygesen K, Alpert JS, Jaffe AS, Simoons
ML, Chaitman BR and White HD: Joint ESC/ACCF/AHA/WHF Task Force for
Universal Definition of Myocardial Infarction: Third universal
definition of myocardial infarction. J Am Coll Cardiol.
60:1581–1598. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
16
|
Kurosaki T: Regulation of BCR signaling.
Mol Immunol. 48:1287–1291. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huntington ND, Xu Y, Puthalakath H, Light
A, Willis SN, Strasser A and Tarlinton DM: CD45 links the B cell
receptor with cell survival and is required for the persistence of
germinal centers. Nat Immunol. 7:190–198. 2006. View Article : Google Scholar
|
18
|
Zikherman J, Doan K, Parameswaran R,
Raschke W and Weiss A: Quantitative differences in CD45 expression
unmask functions for CD45 in B-cell development, tolerance, and
survival. Proc Natl Acad Sci USA. 109:E3–E12. 2012. View Article : Google Scholar :
|
19
|
Ohtsuka M, Arase H, Takeuchi A, Yamasaki
S, Shiina R, Suenaga T, Sakurai D, Yokosuka T, Arase N, Iwashima M,
et al: NFAM1, an immunoreceptor tyrosine-based activation
motif-bearing molecule that regulates B cell development and
signaling. Proc Natl Acad Sci USA. 101:8126–8131. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lv W, Duan Q, Wang L, Gong Z, Yang F and
Song Y: Expression of B-cell-associated genes in peripheral blood
mononuclear cells of patients with symptomatic pulmonary embolism.
Mol Med Rep. 11:2299–2305. 2015.
|
21
|
Scapini P, Pereira S, Zhang H and Lowell
CA: Multiple roles of Lyn kinase in myeloid cell signaling and
function. Immunol Rev. 228:23–40. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li FJ, Schreeder DM, Li R, Wu J and Davis
RS: FCRL3 promotes TLR9-induced B-cell activation and suppresses
plasma cell differentiation. Eur J Immunol. 43:2980–2992. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Stepanek O, Draber P, Drobek A, Horejsi V
and Brdicka T: Nonredundant roles of Src-family kinases and Syk in
the initiation of B-cell antigen receptor signaling. J Immunol.
190:1807–1818. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Barrington RA, Schneider TJ, Pitcher LA,
Mempel TR, Ma M, Barteneva NS and Carroll MC: Uncoupling CD21 and
CD19 of the B-cell coreceptor. Proc Natl Acad Sci USA.
106:14490–14495. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
van Zelm MC, Smet J, Adams B, Mascart F,
Schandené L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ
and van der Burg M: CD81 gene defect in humans disrupts CD19
complex formation and leads to antibody deficiency. J Clin Invest.
120:1265–1274. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Barua D, Hlavacek WS and Lipniacki TA:
Computational model for early events in B cell antigen receptor
signaling: Analysis of the roles of Lyn and Fyn. J Immunol.
189:646–658. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Texido G, Su IH, Mecklenbräuker I, Saijo
K, Malek SN, Desiderio S, Rajewsky K and Tarakhovsky A: The
B-cell-specific Src-family kinase Blk is dispensable for B-cell
development and activation. Mol Cell Biol. 20:1227–1233. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pospisil R, Silverman GJ, Marti GE, Aruffo
A, Bowen MA and Mage RG: CD5 is A potential selecting ligand for
B-cell surface immunoglobulin: A possible role in maintenance and
selective expansion of normal and malignant B cells. Leuk Lymphoma.
36:353–365. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
de Andres B, Mueller AL, Verbeek S, Sandor
M and Lynch RG: A regulatory role for Fcgamma receptors CD16 and
CD32 in the development of murine B cells. Blood. 92:2823–2829.
1998.PubMed/NCBI
|
30
|
Horejs-Hoeck J, Hren A, Mudde GC and
Woisetschläger M: Inhibition of immunoglobulin E synthesis through
Fc gammaRII (CD32) by a mechanism independent of B-cell receptor
co-cross-linking. Immunology. 115:407–415. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tedla N, An H, Borges L, Vollmer-Conna U,
Bryant K, Geczy C and McNeil HP: Expression of activating and
inhibitory leukocyte immunoglobulin-like receptors in rheumatoid
synovium: Correlations to disease activity. Tissue Antigens.
77:305–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fanger NA, Borges L and Cosman D: The
leukocyte immunoglobulin-like receptors (LIRs): A new family of
immune regulators. J Leukoc Biol. 66:231–236. 1999.PubMed/NCBI
|
33
|
Hanten JA, Vasilakos JP, Riter CL, Neys L,
Lipson KE, Alkan SS and Birmachu W: Comparison of human B cell
activation by TLR7 and TLR9 agonists. BMC Immunol. 9:392008.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Yamazaki K, Yamazaki T, Taki S, Miyake K,
Hayashi T, Ochs HD and Agematsu K: Potentiation of TLR9 responses
for human naïve B-cell growth through RP105 signaling. Clin
Immunol. 135:125–136. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hilgendorf I, Theurl I, Gerhardt LM,
Robbins CS, Weber GF, Gonen A, Iwamoto Y, Degousee N, Holderried
TA, Winter C, et al: Innate response activator B cells aggravate
atherosclerosis by stimulating T helper-1 adaptive immunity.
Circulation. 129:1677–1687. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kwakkenbos MJ, Pouwels W, Matmati M,
Stacey M, Lin HH, Gordon S, van Lier RA and Hamann J: Expression of
the largest CD97 and EMR2 isoforms on leukocytes facilitates a
specific interaction with chondroitin sulfate on B cells. J Leukoc
Biol. 77:112–119. 2005.
|
37
|
De Salort J, Sintes J, Llinàs L,
Matesanz-Isabel J and Engel P: Expression of SLAM (CD150)
cell-surface receptors on human B-cell subsets: From pro-B to
plasma cells. Immunol Lett. 134:129–136. 2011. View Article : Google Scholar
|
38
|
Reiter R and Pfeffer K: Impaired germinal
centre formation and humoral immune response in the absence of CD28
and interleukin-4. Immunology. 106:222–228. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Galindo-Albarrán AO, Ramírez-Pliego O,
Labastida-Conde RG, Melchy-Pérez EI, Liquitaya-Montiel A,
Esquivel-Guadarrama FR, Rosas-Salgado G, Rosenstein Y and Santana
MA: CD43 signals prepare human T cells to receive cytokine
differentiation signals. J Cell Physiol. 229:172–180. 2014.
View Article : Google Scholar
|
40
|
Chen J, Wang F, Cai Q, Shen S, Chen Y, Hao
C and Sun J: A novel anti-human ICOSL monoclonal antibody that
enhances IgG production of B cells. Monoclon Antib Immunodiagn
Immunother. 32:125–131. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Greenwald RJ, Freeman GJ and Sharpe AH:
The B7 family revisited. Annu Rev Immunol. 23:515–548. 2005.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Mak TW, Shahinian A, Yoshinaga SK, Wakeham
A, Boucher LM, Pintilie M, Duncan G, Gajewska BU, Gronski M,
Eriksson U, et al: Costimulation through the inducible costimulator
ligand is essential for both T helper and B cell functions in T
cell-dependent B cell responses. Nat Immunol. 4:765–772. 2003.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Nadeau PJ, Roy A, Gervais-St-Amour C,
Marcotte MÈ, Dussault N and Néron S: Modulation of CD40-activated B
lymphocytes by N-acetylcysteine involves decreased phosphorylation
of STAT3. Mol Immunol. 49:582–592. 2012. View Article : Google Scholar
|
44
|
Uchida J, Lee Y, Hasegawa M, Liang Y,
Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC and
Tedder TF: Mouse CD20 expression and function. Int Immunol.
16:119–129. 2004. View Article : Google Scholar
|
45
|
Józsi M, Prechl J, Bajtay Z and Erdei A:
Complement receptor type 1 (CD35) mediates inhibitory signals in
human B lymphocytes. J Immunol. 168:2782–2788. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Young NT, Waller EC, Patel R, Roghanian A,
Austyn JM and Trowsdale J: The inhibitory receptor LILRB1 modulates
the differentiation and regulatory potential of human dendritic
cells. Blood. 111:3090–3096. 2008. View Article : Google Scholar
|
47
|
HoWangYin KY, Loustau M, Wu J, Alegre E,
Daouya M, Caumartin J, Sousa S, Horuzsko A, Carosella ED and
LeMaoult J: Multimeric structures of HLA-G isoforms function
through differential binding to LILRB receptors. Cell Mol Life Sci.
69:4041–4049. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fujikawa K, Miletic AV, Alt FW, Faccio R,
Brown T, Hoog J, Fredericks J, Nishi S, Mildiner S, Moores SL, et
al: Vav1/2/3-null mice define an essential role for Vav family
proteins in lymphocyte development and activation but a
differential requirement in MAPK signaling in T and B cells. J Exp
Med. 198:1595–1608. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lee JK, Mathew SO, Vaidya SV, Kumaresan PR
and Mathew PA: CS1 (CRACC, CD319) induces proliferation and
autocrine cytokine expression on human B lymphocytes. J Immunol.
179:4672–4678. 2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kim JR, Mathew SO, Patel RK, Pertusi RM
and Mathew PA: Altered expression of signalling lymphocyte
activation molecule (SLAM) family receptors CS1 (CD319) and 2B4
(CD244) in patients with systemic lupus erythematosus. Clin Exp
Immunol. 160:348–358. 2010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hsi ED, Steinle R, Balasa B, Szmania S,
Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y,
et al: CS1, a potential new therapeutic antibody target for the
treatment of multiple myeloma. Clin Cancer Res. 14:2775–2784. 2008.
View Article : Google Scholar : PubMed/NCBI
|