1
|
Wyse DG, Waldo AL, DiMarco JP, Domanski
MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC,
Dalquist JE and Corley SD: Atrial Fibrillation Follow-up
Investigation of Rhythm Management (AFFIRM) Investigators: A
comparison of rate control and rhythm control in patients with
atrial fibrillation. N Engl J Med. 347:1825–1833. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Anderson JL, Halperin JL, Albert NM,
Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS,
Kovacs RJ, et al: Management of patients with atrial fibrillation
(compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS
recommendations): A report of the American College of
Cardiology/American Heart Association Task Force on Practice
Guidelines. J Am Coll Cardiol. 61:1935–1944. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gilligan DM, Joyner CA and Bundy GM:
Multidisciplinary collaboration for the treatment of atrial
fibrillation: Convergent procedure outcomes from a single center.
Innovation in CRM. 4:1396–1403. 2013.
|
4
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang
F, Zhang Y, Shan H, Luo X, Bai Y, et al: MicroRNA-328 contributes
to adverse electrical remodeling in atrial fibrillation.
Circulation. 122:2378–2387. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang
N, Lin H, Xiao L, Maguy A, Qi XY, et al: MicroRNA-26 governs
profibrillatory inward-rectifier potassium current changes in
atrial fibrillation. J Clin Invest. 123:1939–1951. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen CL, Lin JL, Lai LP, Pan CH, Huang SK
and Lin CS: Altered expression of FHL1, CARP, TSC-22 and P311
provide insights into complex transcriptional regulation in
pacing-induced atrial fibrillation. Biochim Biophys Acta.
1772:317–29. 2007. View Article : Google Scholar
|
8
|
Girmatsion Z, Biliczki P, Bonauer A,
Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A,
Nattel S, Hohnloser SH and Ehrlich JR: Changes in microRNA-1
expression and IK1 upregulation in human atrial fibrillation. Heart
Rhythm. 6:1802–1809. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Barth AS, Merk S, Arnoldi E, Zwermann L,
Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Hinterseer M,
et al: Reprogramming of the human atrial transcriptome in permanent
atrial fibrillation: Expression of a ventricular-like genomic
signature. Circ Res. 96:1022–1029. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Barth AS, Merk S, Arnoldi E, Zwermann L,
Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Pfeufer A, et
al: Functional profiling of human atrial and ventricular gene
expression. Pflugers Arch. 450:201–208. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cooley N, Cowley MJ, Lin RC, Marasco S,
Wong C, Kaye DM, Dart AM and Woodcock EA: Influence of atrial
fibrillation on microRNA expression profiles in left and right
atria from patients with valvular heart disease. Physiol Genomics.
44:211–219. 2012. View Article : Google Scholar
|
12
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang S: A comprehensive evaluation of
SAM, the SAM R-package and a simple modification to improve its
performance. BMC Bioinformatics. 8:2302007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sawilowsky SS (2005): Misconceptions
leading to choosing the t test over the Wilcoxon Mann-Whitney U
test for shift in location parameter. Journal of Modern Applied
Statistical Methods. 4(2): 598–600. 2005.
|
15
|
Shaffer JP: Multiple hypothesis testing.
Annual Review of Psychology. 46:561–584. 1995. View Article : Google Scholar
|
16
|
Yeung KY and Ruzzo WL: Principal component
analysis for clustering gene expression data. Bioinformatics.
17:763–774. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Eisen MB, Spellman PT, Brown PO and
Botstein D: Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: MiRecords: An integrated resource for microRNA-target
interactions. Nucleic Acids Res. 37(Database issue): D105–D110.
2009. View Article : Google Scholar :
|
19
|
Sethupathy P, Corda B and Hatzigeorgiou
AG: TarBase: A comprehensive database of experimentally supported
animal microRNA targets. RNA. 12:192–197. 2006. View Article : Google Scholar :
|
20
|
Peng X, Li Y, Walters KA, Rosenzweig ER,
Lederer SL, Aicher LD, Proll S and Katze MG: Computational
identification of hepatitis C virus associated microRNA-mRNA
regulatory modules in human livers. BMC Genomics. 10:3732009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu H, Brannon AR, Reddy AR, Alexe G,
Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, et al:
Identifying mRNA targets of microRNA dysregulated in cancer: With
application to clear cell renal cell carcinoma. BMC Syst Biol.
4:512010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNA expression signature and
antisense-mediated depletion reveal an essential role of MicroRNA
in vascular neointimal lesion formation. Circ Res. 100:1579–1588.
2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang
N, Lin H, Xiao L, Maguy A, Qi XY, et al: MicroRNA-26 governs
profibrillatory inward-rectifier potassium current changes in
atrial fibrillation. J Clin Invest. 123:1939–1951. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rao PK, Kumar RM, Farkhondeh M,
Baskerville S and Lodish HF: Myogenic factors that regulate
expression of muscle-specific microRNAs. Proc Natl Acad Sci USA.
103:8721–8726. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Barth AS, Merk S, Arnoldi E, Zwermann L,
Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Hinterseer M,
et al: Reprogramming of the human atrial transcriptome in permanent
atrial fibrillation: Expression of a ventricular-like genomic
signature. Circ Res. 96:1022–1029. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mao S and Huang S: Toll-like receptors
signaling in glomerular diseases. J Recept Signal Transduct Res.
34:81–84. 2014. View Article : Google Scholar
|
29
|
Kharlap MS, Timofeeva AV, Goryunova LE,
Khaspekov GL, Dzemeshkevich SL, Ruskin VV, Akchurin RS, Golitsyn SP
and Beabealashvilli RSh: Atrial appendage transcriptional profile
in patients with atrial fibrillation with structural heart
diseases. Ann N Y Acad Sci. 1091:205–217. 2006. View Article : Google Scholar
|
30
|
Wajapeyee N, Serra RW, Zhu X, Mahalingam M
and Green MR: Role for IGFBP7 in senescence induction by BRAF.
Cell. 141:746–747. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Benson MD, Li QJ, Kieckhafer K, Dudek D,
Whorton MR, Sunahara RK, Iñiguez-Lluhí JA and Martens JR: SUMO
modification regulates inactivation of the voltage-gated potassium
channel Kv1.5. Proc Natl Acad Sci USA. 104:1805–1810. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Rossi S, Tsirigos A, Amoroso A, Mascellani
N, Rigoutsos I, Calin GA and Volinia S: OMiR: Identification of
associations between OMIM diseases and microRNAs. Genomics.
97:71–76. 2011. View Article : Google Scholar
|