1
|
Qazi Y, Wong G, Monson B, Stringham J and
Ambati BK: Corneal transparency: Genesis, maintenance and
dysfunction. Brain Res Bull. 81:198–210. 2010. View Article : Google Scholar
|
2
|
Chung ES, Chauhan SK, Jin Y, Nakao S,
Hafezi-Moghadam A, van Rooijen N, Zhang Q, Chen La and Dana R:
Contribution of macrophages to angiogenesis induced by vascular
endothelial growth factor receptor-3-specific ligands. Am J Pathol.
175:1984–1992. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ellenberg D, Azar DT, Hallak JA, Tobaigy
F, Han KY, Jain S, Zhou Z and Chang JH: Novel aspects of corneal
angiogenic and lymphangiogenic privilege. Prog Retin Eye Res.
29:208–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hajrasouliha AR, Sadrai Z, Chauhan SK and
Dana R: b-FGF induces corneal blood and lymphatic growth in a
spatially distinct pattern. Cornea. 31:804–809. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ebrahem Q, Minamoto A, Hoppe G, Anand-Apte
B and Sears E: Triamcinolone acetonide inhibits IL-6- and
VEGF-induced angiogenesis downstream of the IL-6 and VEGF
receptors. Invest Ophthalmol Vis Sci. 47:4935–4941. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang J, Cao R, Zhang Y, Jia T, Cao Y and
Wahlberg E: Differential roles of PDGFR-alpha and PDGFR-beta in
angiogenesis and vessel stability. FASEB J. 23:153–163. 2009.
View Article : Google Scholar
|
7
|
Xin X, Yang S, Ingle G, Zlot C, Rangell L,
Kowalski J, Schwall R, Ferrara N and Gerritsen ME: Hepatocyte
growth factor enhances vascular endothelial growth factor-induced
angiogenesis in vitro and in vivo. Am J Pathol. 158:1111–1120.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaipainen A, Korhonen J, Mustonen T, van
Hinsbergh VW, Fang GH, Dumont D, Breitman M and Alitalo K:
Expression of the fms-like tyrosine kinase 4 gene becomes
restricted to lymphatic endothelium during development. Proc Natl
Acad Sci USA. 92:3566–3570. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Banerji S, Ni J, Wang SX, Clasper S, Su J,
Tammi R, Jones M and Jackson DG: LYVE-1, a new homologue of the
CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J
Cell Biol. 144:789–801. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wilting J, Papoutsi M, Christ B,
Nicolaides KH, von Kaisenberg CS, Borges J, Stark GB, Alitalo K,
Tomarev SI, Niemeyer C and Rössler J: The transcription factor
Prox1 is a marker for lymphatic endothelial cells in normal and
diseased human tissues. FASEB J. 16:1271–1273. 2002.PubMed/NCBI
|
11
|
Tammela T and Alitalo K: Molecular
mechanisms and future promise. Cell. 140:460–476. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jeltsch M, Kaipainen A, Joukov V, Meng X,
Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK and Alitalo K:
Hyperplasia of lymphatic vessels in VEGF-C transgenic mice.
Science. 276:1423–1425. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Karkkainen MJ, Haiko P, Sainio K, Partanen
J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala
H, et al: Vascular endothelial growth factor C is required for
sprouting of the first lymphatic vessels from embryonic veins. Nat
Immunol. 5:74–80. 2004. View
Article : Google Scholar
|
14
|
Mäkinen T, Jussila L, Veikkola T, Karpanen
T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H,
Nishikawa S, et al: Inhibition of lymphangiogenesis with resulting
lymphedema in transgenic mice expressing soluble VEGF receptor-3.
Nat Med. 7:199–205. 2001. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Amano S, Rohan R, Kuroki M, Tolentino M
and Adamis AP: Requirement for vascular endothelial growth factor
in wound- and inflammation-related corneal neovascularization.
Invest Ophthalmol Vis Sci. 39:18–22. 1998.PubMed/NCBI
|
16
|
Murphy PM, Baggiolini M, Charo IF, Hébert
CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ and Power CA:
International union of pharmacology. XXII. Nomenclature for
chemokine receptors. Pharmacol Rev. 52:145–176. 2000.PubMed/NCBI
|
17
|
Nagasawa T, Hirota S, Tachibana K, et al:
Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in
mice lacking the CXC chemokine PBSF/SDF-1. Nature. 382:635–638.
1996. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Zou YR, Kottmann AH, Kuroda M, Taniuchi I
and Littman DR: Function of the chemokine receptor CXCR4 in
haematopoiesis and in cerebellar development. Nature. 393:595–599.
1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ma Q, Jones D, Borghesani PR, et al:
Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar
neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad
Sci USA. 95:9448–53. 1998. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tachibana K, Hirota S, Iizasa H, Yoshida
H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N,
Nishikawa S, et al: The chemokine receptor CXCR4 is essential for
vascularization of the gastrointestinal tract. Nature. 393:591–594.
1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Burger JA and Kipps TJ: CXCR4: A key
receptor in the crosstalk between tumor cells and their
microenvironment. Blood. 107:1761–1767. 2006. View Article : Google Scholar
|
23
|
Chiang AC and Massagué J: Molecular basis
of metastasis. N Engl J Med. 359:2814–2823. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
De Clercq E: The bicyclam AMD3100 story.
Nat Rev Drug Discov. 2:581–587. 2003. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Salcedo R, Wasserman K, Young HA, et al:
Vascular endothelial growth factor and basic fibroblast growth
factor induce expression of CXCR4 on human endothelial cells: In
vivo neovascularization induced by stromal-derived factor-1alpha.
Am J Pathol. 154:1125–1135. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ping YF, Yao XH, Jiang JY, et al: The
chemokine CXCL12 and its receptor CXCR4 promote glioma stem
cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT
signalling. J Pathol. 224:344–354. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mirshahi F, Pourtau J, Li H, Muraine M,
Trochon V, Legrand E, Vannier J, Soria J, Vasse M and Soria C:
SDF-1 activity on microvascular endothelial cells: Consequences on
angiogenesis in in vitro and in vivo models. Thromb Res.
99:587–594. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cursiefen C, Chen L, Borges LP, Jackson D,
Cao J, Radziejewski C, D'Amore PA, Dana MR, Wiegand SJ and
Streilein JW: VEGF-A stimulates lymphangiogenesis and
hemangiogenesis in inflammatory neovascularization via macrophage
recruitment. J Clin Invest. 113:1040–1050. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang Z, Ma JX, Gao G, Li C, Luo L, Zhang
M, Yang W, Jiang A, Kuang W, Xu L, et al: Plasminogen kringle 5
inhibits alkali-burn-induced corneal neovascularization. Invest
Ophthalmol Vis Sci. 46:4062–4071. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Tang XL, Sun JF, Wang XY, Du LL and Liu P:
Blocking neuropilin-2 enhances corneal allograft survival by
selectively inhibiting lymphangiogenesis on vascularized beds. Mol
Vis. 16:2354–2361. 2010.PubMed/NCBI
|
32
|
Bock F, Onderka J, Hos D, Horn F, Martus P
and Cursiefen C: Improved semiautomatic method for morphometry of
angiogenesis and lymphangiogenesis in corneal flatmounts. Exp Eye
Res. 87:462–470. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cao R, Björndahl MA, Religa P, et al:
PDGF-BB induces intra-tumoral lymphangiogenesis and promotes
lymphatic metastasis. Cancer Cell. 6:333–345. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Giacomini C, Ferrari G, Bignami F and Rama
P: Alkali burn versus suture-induced corneal neovascularization in
C57BL/6 mice: An overview of two common animal models of corneal
neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bourcier T, Berbar T, Paquet S, Rondeau N,
Thomas F, Borderie V, Laroche L, Rostène W, Haour F and Lombet A:
Characterization and functionality of CXCR4 chemokine receptor and
SDF-1 in human corneal fibroblasts. Mol Vis. 9:96–102.
2003.PubMed/NCBI
|
36
|
Carr AN, Howard BW, Yang HT, Eby-Wilkens
E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG and Proia A:
Efficacy of systemic administration of SDF-1 in a model of vascular
insufficiency: Support for an endothelium-dependent mechanism.
Cardiovasc Res. 69:925–935. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cursiefen C, Masli S, Ng TF, Dana MR,
Bornstein P, Lawler J and Streilein JW: Roles of thrombospondin-1
and -2 in regulating corneal and iris angiogenesis. Invest
Ophthalmol Vis Sci. 45:1117–1124. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao G and Ma J: Tipping the balance for
angiogenic disorders. Drug Discov Today. 7:171–172. 2002.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Uno K, Hayashi H, Kuroki M, Uchida H,
Yamauchi Y, Kuroki M and Oshima K: Thrombospondin-1 accelerates
wound healing of corneal epithelia. Biochem Biophys Res Commun.
315:928–934. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bock F, Onderka J, Dietrich T, Bachmann B,
Kruse FE, Paschke M, Zahn G and Cursiefen C: Bevacizumab as a
potent inhibitor of inflammatory corneal angiogenesis and
lymphangiogenesis. Invest Ophthalmol Vis Sci. 48:2545–2552. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Manzano RP, Peyman GA, Khan P, Carvounis
PE, Kivilcim M, Ren M, Lake JC and Chévez-Barrios P: Inhibition of
experimental corneal neovascularisation by bevacizumab (Avastin).
Br J Ophthalmol. 91:804–807. 2007. View Article : Google Scholar
|
42
|
Antoniou KM, Soufla G, Lymbouridou R,
Economidou F, Lasithiotaki I, Manousakis M, Drositis I, Spandidos
DA and Siafakas NM: Expression analysis of angiogenic growth
factors and biological axis CXCL12/CXCR4 axis in idiopathic
pulmonary fibrosis. Connect Tissue Res. 51:71–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chang LK, Garcia-Cardeña G, Farnebo F,
Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J
and Kaipainen A: Dose-dependent response of FGF-2 for
lymphangiogenesis. Proc Natl Acad Sci USA. 101:11658–11663. 2004.
View Article : Google Scholar : PubMed/NCBI
|