1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vockley JG and Niederhuber JE: Diagnosis
and treatment of cancer using genomics. BMJ. 350:h18322015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kondo T: Inconvenient truth: Cancer
biomarker development by using proteomics. Biochim Biophys Acta.
1844:861–865. 2014. View Article : Google Scholar
|
4
|
Di Meo A, Diamandis EP, Rodriguez H,
Hoofnagle AN, Ioannidis J and Lopez M: What is wrong with clinical
proteomics? Clin Chem. 60:1258–1266. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wiśniewski JR, Ostasiewicz P, Duś K,
Zielińska DF, Gnad F and Mann M: Extensive quantitative remodeling
of the proteome between normal colon tissue and adenocarcinoma. Mol
Syst Biol. 8:6112012. View Article : Google Scholar
|
6
|
Sandin M, Chawade A and Levander F: Is
label-free LC-MS/MS ready for biomarker discovery? Proteomics Clin
Appl. 9:289–294. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Farragher SM, Tanney A, Kennedy RD and
Paul Harkin PD: RNA expression analysis from formalin fixed
paraffin embedded tissues. Histochem Cell Biol. 130:435–445. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ibusuki M, Fu P, Yamamoto S, Fujiwara S,
Yamamoto Y, Honda Y, Iyama K and Iwase H: Establishment of a
standardized gene-expression analysis system using formalin-fixed,
paraffin-embedded, breast cancer specimens. Breast Cancer.
20:159–166. 2013. View Article : Google Scholar
|
9
|
Walter RF, Mairinger FD, Wohlschlaeger J,
Worm K, Ting S, Vollbrecht C, Schmid KW and Hager T: FFPE tissue as
a feasible source for gene expression analysis-a comparison of
three reference genes and one tumor marker. Pathol Res Pract.
209:784–789. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kalmar A, Wichmann B, Galamb O, Spisák S,
Tóth K, Leiszter K, Tulassay Z and Molnár B: Gene expression
analysis of normal and colorectal cancer tissue samples from fresh
frozen and matched formalin-fixed, paraffin-embedded (FFPE)
specimens after manual and automated RNA isolatio. Methods.
59:S16–S19. 2013. View Article : Google Scholar
|
11
|
Antonov J, Goldstein DR, Oberli A, Baltzer
A, Pirotta M, Fleischmann A, Altermatt HJ and Jaggi R: Reliable
gene expression measurements from degraded RNA by quantitative
real-time PCR depend on short amplicons and a proper normalization.
Lab Invest. 85:1040–1050. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kong H, Zhu M, Cui F, Wang S, Gao X, Lu S,
Wu Y and Zhu H: Quantitative assessment of short amplicons in
FFPE-derived long-chain RNA. Sci Rep. 4:72462014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF
and Wang JW: Suppression of cellular apoptosis susceptibility
(CSE1L) inhibits proliferation and induces apoptosis in colorectal
cancer cells. Asian Pac J Cancer Prev. 14:1017–1021. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tai CJ, Su TC, Jiang MC, Chen HC, Shen SC,
Lee WR, Liao CF, Chen YC, Lin SH, Li LT, et al: Correlations
between cytoplasmic CSE1L in neoplastic colorectal glands and depth
of tumor penetration and cancer stage. J Transl Med. 11:292013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sillars-Hardebol AH, Carvalho B, Beliën
JA, de Wit M, Delis-van Diemen PM, Tijssen M, van de Wiel MA,
Pontén F, Meijer GA and Fijneman RJ: CSE1L, DIDO1 and RBM39 in
colorectal adenoma to carcinoma progression. Cell Oncol (Dordr).
35:293–300. 2012. View Article : Google Scholar
|
16
|
Tung MC, Tsai CS, Tung JN, Tsao TY, Chen
HC, Yeh KT, Liao CF and Jiang MC: Higher prevalence of secretory
CSE1L/CAS in sera of patients with metastatic cancer. Cancer
Epidemiol Biomarkers Prev. 18:1570–1577. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Alnabulsi A, Agouni A, Mitra S,
Garcia-Murillas I, Carpenter B, Bird S and Murray GI: Cellular
apoptosis susceptibility (chromosome segregation 1-like, CSE1L)
gene is a key regulator of apoptosis, migration and invasion in
colorectal cancer. J Pathol. 228:471–481. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liao CF, Luo SF, Li LT, Lin CY, Chen YC
and Jiang MC: CSE1L/CAS, the cellular apoptosis susceptibility
protein, enhances invasion and metastasis but not proliferation of
cancer cells. J Exp Clin Cancer Res. 27:152008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Brinkmann U, Gallo M, Polymeropoulos MH
and Pastan I: The human CAS (cellular apoptosis susceptibility)
gene mapping on chromosome 20q13 is amplified in BT474 breast
cancer cells and part of aberrant chromosomes in breast and colon
cancer cell lines. Genome Res. 6:187–194. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rachidi SM, Qin T, Sun S, Zheng WJ and Li
Z: Molecular profiling of multiple human cancers defines an
inflammatory cancer-associated molecular pattern and uncovers KPNA2
as a uniform poor prognostic cancer marker. PLoS One. 8:e579112013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Alshareeda AT, Negm OH, Green AR, Nolan
CC, Tighe P, Albarakati N, Sultana R, Madhusudan S, Ellis IO and
Rakha EA: KPNA2 is a nuclear export protein that contributes to
aberrant localisation of key proteins and poor prognosis of breast
cancer. Br J Cancer. 112:1929–1937. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma S and Zhao X: KPNA2 is a promising
biomarker candidate for esophageal squamous cell carcinoma and
correlates with cell proliferation. Oncol Rep. 32:1631–1637.
2014.PubMed/NCBI
|
23
|
Bustin SA, Li SR and Dorudi S: Expression
of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is
downregulated in human colorectal cancer. DNA Cell Biol.
20:331–338. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Musrap N, Tuccitto A, Karagiannis GS,
Saraon P, Batruch I and Diamandis EP: Comparative proteomics of
ovarian cancer aggregate formation reveals an increased expression
of calcium-activated chloride channel regulator 1 (CLCA1). J Biol
Chem. 290:17218–17227. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Muranen TA, Greco D, Fagerholm R,
Kilpivaara O, Kämpjärvi K, Aittomäki K, Blomqvist C, Heikkilä P,
Borg A and Nevanlinna H: Breast tumors from CHEK2 1100delC-mutation
carriers: Genomic landscape and clinical implications. Breast
Cancer Res. 13:R902011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang B, Cao L, Liu J, Xu Y, Milne G, Chan
W, Heys SD, McCaig CD and Pu J: Low expression of chloride channel
accessory 1 predicts a poor prognosis in colorectal cancer. Cancer.
121:1570–1580. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang B, Cao L, Liu B, McCaig CD and Pu J:
The transition from proliferation to differentiation in colorectal
cancer is regulated by the calcium activated chloride channel A1.
PLoS One. 8:e608612013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee S, Bang S, Song K and Lee I:
Differential expression in normal-adenoma-carcinoma sequence
suggests complex molecular carcinogenesis in colon. Oncol Rep.
16:747–754. 2006.PubMed/NCBI
|
29
|
Lawrie LC, Dundas SR, Curran S and Murray
GI: Liver fatty acid binding protein expression in colorectal
neoplasia. Br J Cancer. 90:1955–1960. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kheirelseid EA, Chang KH, Newell J, Kerin
MJ and Miller N: Identification of endogenous control genes for
normalisation of real-time quantitative PCR data in colorectal
cancer. BMC Mol Biol. 11:122010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yamazaki T, Kanda T, Sakai Y and
Hatakeyama K: Liver fatty acid-binding protein is a new prognostic
factor for hepatic resection of colorectal cancer metastases. J
Surg Oncol. 72:83–87. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang B, Tao X, Huang CZ, Liu JF, Ye YB and
Huang AM: Decreased expression of liver-type fatty acid-binding
protein is associated with poor prognosis in hepatocellular
carcinoma. Hepatogastroenterology. 61:1321–1326. 2014.PubMed/NCBI
|
33
|
Hashimoto T, Kusakabe T, Watanabe K,
Sugino T, Fukuda T, Nashimoto A, Honma K, Sato Y, Kimura H, Fujii H
and Suzuki T: Liver-type fatty acid-binding protein is highly
expressed in intestinal metaplasia and in a subset of carcinomas of
the stomach without association with the fatty acid synthase status
in the carcinoma. Pathobiology. 71:115–122. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Satoh Y, Mori K, Kitano K, Kitayama J,
Yokota H, Sasaki H, Uozaki H, Fukayama M, Seto Y and Nagawa H:
Analysis for the combination expression of CK20, FABP1 and MUC2 is
sensitive for the prediction of peritoneal recurrence in gastric
cancer. Jpn J Clin Oncol. 42:148–152. 2012. View Article : Google Scholar
|
35
|
Sharaf RN, Butte AJ, Montgomery KD, Pai R,
Dudley JT and Pasricha PJ: Computational prediction and
experimental validation associating FABP-1 and pancreatic
adenocarcinoma with diabetes. BMC Gastroenterol. 11:52011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Schweinfest CW, Henderson KW, Suster S,
Kondoh N and Papas TS: Identification of a colon mucosa gene that
is down-regulated in colon adenomas and adenocarcinomas. Proc Natl
Acad Sci USA. 90:4166–4170. 1993. View Article : Google Scholar : PubMed/NCBI
|
37
|
Höglund P, Haila S, Socha J, Tomaszewski
L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg
C, de la Chapelle A and Kere J: Mutations of the down-regulated in
adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet.
14:316–319. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim HS, Kang SH, Park CH, Yang WI, Jeung
HC, Chung HC, Roh JK, Ahn JB, Kim NK, Min BS and Rha SY:
Genome-wide molecular characterization of mucinous colorectal
adenocarcinoma using cDNA microarray analysis. Oncol Rep.
25:717–727. 2011.PubMed/NCBI
|
39
|
Mlakar V, Berginc G, Volavsek M, Stor Z,
Rems M and Glavac D: Presence of activating KRAS mutations
correlates significantly with expression of tumour suppressor genes
DCN and TPM1 in colorectal cancer. BMC Cancer. 9:2822009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Antalis TM, Reeder JA, Gotley DC, Byeon
MK, Walsh MD, Henderson KW, Papas TS and Schweinfest CW:
Down-regulation of the down-regulated in adenoma (DRA) gene
correlates with colon tumor progression. Clin Cancer Res.
4:1857–1863. 1998.PubMed/NCBI
|
41
|
Silberg DG, Wang W, Moseley RH and Traber
PG: The down regulated in adenoma (dra) gene encodes an
intestine-specific membrane sulfate transport protein. J Biol Chem.
270:11897–11902. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schweinfest CW, Spyropoulos DD, Henderson
KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang Z and Soleimani
M: Slc26a3 (dra)-deficient mice display chloride-losing diarrhea,
enhanced colonic proliferation and distinct up-regulation of ion
transporters in the colon. J Biol Chem. 281:37962–37971. 2006.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chapman JM, Knoepp SM, Byeon MK, Henderson
KW and Schweinfest CW: The colon anion transporter, down-regulated
in adenoma, induces growth suppression that is abrogated by E1A.
Cancer Res. 62:5083–5088. 2002.PubMed/NCBI
|
44
|
Hemminki A, Höglund P, Pukkala E,
Salovaara R, Järvinen H, Norio R and Aaltonen LA: Intestinal cancer
in patients with a germline mutation in the down-regulated in
adenoma (DRA) gene. Oncogene. 16:681–684. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
|
46
|
|
47
|
Juhlin CC, Goh G, Healy JM, Fonseca AL,
Scholl UI, Stenman A, Kunstman JW, Brown TC, Overton JD, Mane SM,
et al: Whole-exome sequencing characterizes the landscape of
somatic mutations and copy number alterations in adrenocortical
carcinoma. J Clin Endocrinol Metab. 100:E493–E502. 2015. View Article : Google Scholar
|
48
|
Hubbard K, Catalano J, Puri RK and Gnatt
A: Knockdown of TFIIS by RNA silencing inhibits cancer cell
proliferation and induces apoptosis. BMC Cancer. 8:1332008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Shema E, Kim J, Roeder RG and Oren M:
RNF20 inhibits TFIIS-facilitated transcriptional elongation to
suppress pro-oncogenic gene expression. Mol Cell. 42:477–488. 2011.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zougman A, Hutchins GG, Cairns DA,
Verghese E, Perry SL, Jayne DG, Selby PJ and Banks RE: Retinoic
acid-induced protein 3: Identification and characterisation of a
novel prognostic colon cancer biomarker. Eur J Cancer. 49:531–539.
2013. View Article : Google Scholar
|
51
|
Kume H, Muraoka S, Kuga T, Adachi J,
Narumi R, Watanabe S, Kuwano M, Kodera Y, Matsushita K and Fukuoka
J: Discovery of colorectal cancer biomarker candidates by membrane
proteomic analysis and subsequent verification using selected
reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol
Cell Proteomics. 13:1471–1484. 2014. View Article : Google Scholar : PubMed/NCBI
|