Telomerase activity in pregnancy complications (Review)
- Authors:
- Persefoni Fragkiadaki
- Dimitrios Tsoukalas
- Irini Fragkiadoulaki
- Christos Psycharakis
- Dragana Nikitovic
- Demetrios A. Spandidos
- Aristides M. Tsatsakis
-
Affiliations: Center of Toxicology Science and Research, University of Crete, Heraklion 71003, Greece, Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece - Published online on: May 9, 2016 https://doi.org/10.3892/mmr.2016.5231
- Pages: 16-21
-
Copyright: © Fragkiadaki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J and Passos JF: Telomeres are favoured targets of a president DNA damage in ageing and stress-induced senescence. Nat Commun. 3:7082012. View Article : Google Scholar | |
Shay JW and Wright WE: Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis. 26:867–874. 2005. View Article : Google Scholar | |
Collins K: The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol. 7:484–494. 2006. View Article : Google Scholar : PubMed/NCBI | |
Harley CB, Futcher AB and Greider CW: Telomeres shorten during ageing of human fibroblasts. Nature. 345:458–460. 1990. View Article : Google Scholar : PubMed/NCBI | |
Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J and Epel ES: Stress and telomere biology: A lifespan perspective. Psychoneuroendocrinology. 38:1835–1842. 2013. View Article : Google Scholar : PubMed/NCBI | |
Armanios M and Blackburn EH: The telomere syndromes. Nat Rev Genet. 13:693–704. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takai H, Smogorzewska A and de Lange T: DNA damage foci at dysfunctional telomeres. Curr Biol. 13:1549–1556. 2003. View Article : Google Scholar : PubMed/NCBI | |
d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP and Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature. 426:194–198. 2003. View Article : Google Scholar : PubMed/NCBI | |
Abdalla HI, Burton G, Kirkland A, Johnson MR, Leonard T, Brooks AA and Studd JW: Age, pregnancy and miscarriage: Uterine versus ovarian factors. Hum Reprod. 8:1512–1517. 1993.PubMed/NCBI | |
Janny L and Menezo YJ: Maternal age effect on early human embryonic development and blastocyst formation. Mol Reprod Dev. 45:31–37. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wright WE, Piatyszek MA, Rainey WE, Byrd W and Shay JW: Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 18:173–179. 1996. View Article : Google Scholar : PubMed/NCBI | |
Allsopp R, Shimoda J, Easa D and Ward K: Long telomeres in the mature human placenta. Placenta. 28:324–327. 2007. View Article : Google Scholar | |
Liu L, Blasco M, Trimarchi J and Keefe D: An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 249:74–84. 2002. View Article : Google Scholar : PubMed/NCBI | |
Orly J: Molecular events defining follicular developments and steroidogenesis in the ovary. Gene engineering in endocrinology. Shupnik MA: Humana Press Inc; Totowa, NJ: pp. 239–276. 2001 | |
Klinger FG and De Felici M: In vitro development of growing oocytes from fetal mouse oocytes: Stage-specific regulation by stem cell factor and granulosa cells. Dev Biol. 244:85–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
Russo V, Berardinelli P, Capacchietti G and Scapolo PA: Localization of the telomerase catalytic subunit (TERT) in pig ovarian follicles. Vet Res Commun. 27(Suppl 1): 623–626. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu W and Zhu GJ: Expression of telomerase in human ovarian luteinized granulosa cells and its relationship to ovarian function. Zhonghua Fu Chan Ke Za Zhi. 38:402–404. 2003.In Chinese. PubMed/NCBI | |
Kinugawa C, Murakami T, Okamura K and Yajima A: Telomerase activity in normal ovaries and premature ovarian failure. Tohoku. J Exp Med. 190:231–238. 2000. | |
Johnson JE, Higdon HL III and Boone WR: Effect of human granulosa cell co-culture using standard culture media on the maturation and fertilization potential of immature human oocytes. Fertil Steril. 90:1674–1679. 2008. View Article : Google Scholar | |
Heng BC, Tong GQ and Ng SC: Effects of granulosa coculture on in-vitro oocyte meiotic maturation within a putatively less competent murine model. Theriogenology. 62:1066–1092. 2004. View Article : Google Scholar : PubMed/NCBI | |
Biron-Shental T, Kidron D, Sukenik-Halevy R, Goldberg-Bittman L, Sharony R, Fejgin MD and Amiel A: TERC telomerase subunit gene copy number in placentas from pregnancies complicated with intrauterine growth restriction. Early Hum Dev. 87:73–75. 2011. View Article : Google Scholar | |
Lavranos TC, Mathis JM, Latham SE, Kalionis B, Shay JW and Rodgers RJ: Evidence for ovarian granulosa stem cells: Telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 61:358–366. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cheng EH, Chen SU, Lee TH, Pai YP, Huang LS, Huang CC and Lee MS: Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 28:929–936. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wang W, Mo Y, Ma Y, Ouyang N, Li R, Mai M, He Y, Bodombossou-Djobo MM and Yang D: Women with high telomerase activity in luteinised granulosa cells have a higher pregnancy rate during in vitro fertilisation treatment. J Assist Reprod Genet. 28:797–807. 2011. View Article : Google Scholar : PubMed/NCBI | |
Butts S, Riethman H, Ratcliffe S, Shaunik A, Coutifaris C and Barnhart K: Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab. 94:4835–4843. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Chen H, Li R, Ouyang N, Chen J, Huang L, Mai M, Zhang N, Zhang Q and Yang D: Telomerase activity is more significant for predicting the outcome of IVF treatment than telomere length in granulosa cells. Reproduction. 147:649–657. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keefe DL, Franco S, Liu L, Trimarchi J, Cao B, Weitzen S, Agarwal S and Blasco MA: Telomere length predicts embryo fragmentation after in vitro fertilization in women - toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol. 192:1256–1260; discussion 1260–1261. 2005. View Article : Google Scholar | |
Chen RJ, Chu CT, Huang SC, Chow SN and Hsieh CY: Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies. Hum Reprod. 17:463–468. 2002. View Article : Google Scholar : PubMed/NCBI | |
Izutsu T, Kudo T, Sato T, Nishiya I, Ohyashiki K and Nakagawara K: Telomerase and proliferative activity in placenta from women with and without fetal growth restriction. Obstet Gynecol. 93:124–129. 1999.PubMed/NCBI | |
Nishi H, Yahata N, Ohyashiki K, Isaka K, Shiraishi K, Ohyashiki JH, Toyama K and Takayama M: Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases. Int J Oncol. 12:81–85. 1998.PubMed/NCBI | |
Kyo S, Takakura M, Tanaka M, Kanaya T, Sagawa T, Kohama T, Ishikawa H, Nakano T, Shimoya K and Inoue M: Expression of telomerase activity in human chorion. Biochem Biophys Res Commun. 241:498–503. 1997. View Article : Google Scholar | |
Biron-Shental T, Sukenik Halevy R, Goldberg-Bittman L, Kidron D, Fejgin MD and Amiel A: Telomeres are shorter in placental trophoblasts of pregnancies complicated with intrauterine growth restriction (IUGR). Early Hum Dev. 86:451–456. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cosmi E, Fanelli T, Visentin S, Daniele T and Zanardo V: Consequences in infants the were intrauterine growth restricted. J Pregnancy. 2011:3643812011. View Article : Google Scholar | |
Kudo T, Izutsu T and Sato T: Telomerase activity and apoptosis as indicators of ageing in placenta with and without intrauterine growth retardation. Placenta. 21:493–500. 2000. View Article : Google Scholar : PubMed/NCBI | |
Izutsu T, Kudo T, Sato T, Nishiya I, Ohyashiki K, Mori M and Nakagawara K: Telomerase activity in human chorionic villi and placenta determined by TRAP and in situ TRAP assay. Placenta. 19:613–618. 1998. View Article : Google Scholar : PubMed/NCBI | |
Izutsu T, Izutsu N, Iwane A, Takada A, Nagasawa T, Kanasugi T and Sugiyama T: Expression of human telomerase reverse transcriptase and correlation with telomerase activity in placentas with and without intrauterine growth retardation. Acta Obstet Gynecol Scand. 85:3–11. 2006. View Article : Google Scholar : PubMed/NCBI | |
Davy P, Nagata M, Bullard P, Fogelson NS and Allsopp R: Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta. 30:539–542. 2009. View Article : Google Scholar : PubMed/NCBI | |
Breathnach FM and Malone FD: Fetal growth disorders in twin gestations. Semin Perinatol. 36:175–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banks CL, Nelson SM and Owen P: First and third trimester ultrasound in the prediction of birthweight discordance in dichorionic twins. Eur J Obstet Gynecol Reprod Biol. 138:34–38. 2008. View Article : Google Scholar | |
Kim SY, Lee SP, Lee JS, Yoon SJ, Jun G and Hwang YJ: Telomerase and apoptosis in the placental trophoblasts of growth discordant twins. Yonsei Med J. 47:698–705. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jauniaux E, Gulbis B and Burton GJ: The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus - a review. Placenta. 24(Suppl A): S86–S93. 2003. View Article : Google Scholar | |
Giaccia AJ, Simon MC and Johnson R: The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease. Genes Dev. 18:2183–2194. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ream M, Ray AM, Chandra R and Chikaraishi DM: Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol. 295:R583–R595. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carter AM: Placental oxygen consumption. Part I: In vivo studies - a review. Placenta. 21(Suppl A): S31–S37. 2000. View Article : Google Scholar | |
Anderson RN: Deaths: Leading causes for 2000. Natl Vital Stat Rep. 50:1–85. 2002.PubMed/NCBI | |
Hutter D, Kingdom J and Jalggi E: Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010:4013232010. View Article : Google Scholar : PubMed/NCBI | |
Miller SL, Huppi PS and Mallard C: The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 594:807–823. 2016. View Article : Google Scholar | |
Faa G, Marcialis MA, Ravarino A, Piras M, Pintus MC and Fanos V: Fetal programming of the human brain: Is there a link with insurgence of neurodegenerative disorders in adulthood? Curr Med Chem. 21:3854–3876. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sutter CH, Laughner E and Semenza GL: Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA. 97:4748–4753. 2000. View Article : Google Scholar | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yatabe N, Kyo S, Maida Y, Nishi H, Nakamura M, Kanaya T, Tanaka M, Isaka K, Ogawa S and Inoue M: HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene. 23:3708–3715. 2004. View Article : Google Scholar : PubMed/NCBI | |
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, et al: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 α. Genes Dev. 12:149–162. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sukenik-Halevy R, Fejgin M, Kidron D, Goldberg-Bittman L, Sharony R, Biron-Shental T, Kitay-Cohen Y and Amiel A: Telomere aggregate formation in placenta specimens of pregnancies complicated with pre-eclampsia. Cancer Genet Cytogenet. 195:27–30. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Nakada T, Kyo S, Inoue M, Shay JW and Isaka K: Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol. 24:6076–6083. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guan JZ, Guan WP, Maeda T and Makino N: Different levels of hypoxia regulate telomere length and telomerase activity. Aging Clin Exp Res. 24:213–217. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coussens M, Davy P, Brown L, Foster C, Andrews WH, Nagata M and Allsopp R: RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci USA. 107:13842–13847. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stewart SA and Weinberg RA: Telomerase and human tumorigenesis. Semin Cancer Biol. 10:399–406. 2000. View Article : Google Scholar | |
Zhang P, Chan SL, Fu W, Mendoza M and Mattson MP: TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability. FASEB J. 17:767–769. 2003.PubMed/NCBI | |
Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, Wüst S and Wadhwa PD: Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci USA. 108:E513–E518. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cohen S, Janicki-Deverts D and Miller GE: Psychological stress and disease. JAMA. 298:1685–1687. 2007. View Article : Google Scholar : PubMed/NCBI | |
Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD and Cawthon RM: Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 101:17312–17315. 2004. View Article : Google Scholar : PubMed/NCBI | |
Monaghan P: Organismal stress, telomeres and life histories. J Exp Biol. 217:57–66. 2014. View Article : Google Scholar | |
Kiecolt-Glaser JK and Glaser R: Psychological stress, telomeres, and telomerase. Brain Behav Immun. 24:529–530. 2010. View Article : Google Scholar : PubMed/NCBI | |
Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M and Wong KK: Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 60:432–435. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Fauce SR and Effros RB: Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav Immun. 22:600–605. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tomiyama AJ, O'Donovan A, Lin J, Puterman E, Lazaro A, Chan J, Dhabhar FS, Wolkowitz O, Kirschbaum C, Blackburn E, et al: Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav. 106:40–45. 2012. View Article : Google Scholar : | |
Sohn SH, Subramani VK, Moon YS and Jang ISL: Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens. Poult Sci. 91:829–836. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wood-Bradley RJ, Barrand S, Giot A and Armitage JA: Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations. Nutrients. 7:1881–1905. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kerac M, Postels DG, Mallewa M, Alusine Jalloh A, Voskuijl WP, Groce N, Gladstone M and Molyneux E: The interaction of malnutrition and neurologic disability in Africa. Semin Pediatr Neurol. 21:42–49. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nnam NM: Improving maternal nutrition for better pregnancy outcomes. Proc Nutr Soc. 74:454–459. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petry CJ, Dorling MW, Pawlak DB, Ozanne SE and Hales CN: Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res. 2:139–143. 2001. View Article : Google Scholar | |
Snoeck A, Remacle C, Reusens B and Hoet JJ: Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 57:107–118. 1990. View Article : Google Scholar : PubMed/NCBI | |
Franco MC, Akamine EH, Di Marco GS, Casarini DE, Fortes ZB, Tostes RC, Carvalho MH and Nigro D: NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: Involvement of the renin-angiotensin system. Cardiovasc Res. 59:767–775. 2003. View Article : Google Scholar | |
Richter T and von Zglinicki T: A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol. 42:1039–1042. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sekoguchi S, Nakajima T, Moriguchi M, Jo M, Nishikawa T, Katagishi T, Kimura H, Minami M, Itoh Y, Kagawa K, et al: Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C. J Gastroenterol Hepatol. 22:182–190. 2007. View Article : Google Scholar : PubMed/NCBI | |
Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ and Hill DJ: A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. 140:4861–4873. 1999.PubMed/NCBI | |
Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H and Ozanne SE: Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J. 23:1521–1528. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL and Ozanne SE: Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J. 22:2037–2044. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jennings BJ, Ozanne SE, Dorling MW and Hales CN: Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett. 448:4–8. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Martin-Gronert MS, McConnell JM and Ozanne SE: Nutritional programming of coenzyme Q: Potential for prevention and intervention? FASEB J. 28:5398–5405. 2014. View Article : Google Scholar : PubMed/NCBI |