1
|
Zhang P, Lu X, Chen J and Chen Z: Schwann
cells originating from skin-derived precursors promote peripheral
nerve regeneration in rats. Neural Regen Res. 9:1696–1702. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Nishihara T, Remacle AG, Angert M,
Shubayev I, Shiryaev SA, Liu H, Dolkas J, Chernov AV, Strongin AY
and Shubayev VI: Matrix metalloproteinase-14 both sheds cell
surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages
and governs the response to peripheral nerve injury. J Biol Chem.
290:3693–3707. 2015. View Article : Google Scholar :
|
3
|
Fairbairn NG, Meppelink AM, Ng-Glazier J,
Randolph MA and Winograd JM: Augmenting peripheral nerve
regeneration using stem cells: A review of current opinion. World J
Stem Cells. 7:11–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Berrocal YA, Almeida VW, Gupta R and Levi
AD: Transplantation of Schwann cells in a collagen tube for the
repair of large, segmental peripheral nerve defects in rats. J
Neurosurg. 119:720–732. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gärtner A, Pereira T, Armada-da-Silva P,
Amado S, Veloso A, Amorim I, Ribeiro J, Santos J, Bárcia R, Cruz P,
et al: Effects of umbilical cord tissue mesenchymal stem cells
(UCX®) on rat sciatic nerve regeneration after neurotmesis
injuries. J Stem Cells Regen Med. 10:14–26. 2014.
|
6
|
Park HW, Lim MJ, Jung H, Lee SP, Paik KS
and Chang MS: Human mesenchymal stem cell-derived Schwann cell-like
cells exhibit neurotrophic effects, via distinct growth factor
production, in a model of spinal cord injury. Glia. 58:1118–1132.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dadon-Nachum M, Sadan O, Srugo I, Melamed
E and Offen D: Differentiated mesenchymal stem cells for sciatic
nerve injury. Stem Cell Rev. 7:664–671. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sabatino MA, Santoro R, Gueven S, Jaquiery
C, Wendt DJ, Martin I, Moretti M and Barbero A: Cartilage graft
engineering by co-culturing primary human articular chondrocytes
with human bone marrow stromal cells. J Tissue Eng Regen Med.
9:1394–1403. 2015. View Article : Google Scholar
|
9
|
Liu Y, Zhang Z, Qin Y, Wu H, Lv Q, Chen X
and Deng W: A new method for Schwann-like cell differentiation of
adipose derived stem cells. Neurosci Lett. 551:79–83. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Razavi S, Mardani M, Kazemi M, Esfandiari
E, Narimani M, Esmaeili A and Ahmadi N: Effect of leukemia
inhibitory factor on the myelinogenic ability of Schwann-like cells
induced from human adipose-derived stem cells. Cell Mol Neurobiol.
33:283–289. 2013. View Article : Google Scholar
|
11
|
Esmaeili A and Zaker SR: Differential
expression of glycine receptor subunit messenger RNA in the rat
following spinal cord injury. Spinal Cord. 49:280–284. 2011.
View Article : Google Scholar
|
12
|
Liu Y, Nie L, Zhao H, Zhang W, Zhang YQ,
Wang SS and Cheng L: Conserved dopamine neurotrophic
factor-transduced mesenchymal stem cells promote axon regeneration
and functional recovery of injured sciatic nerve. PLoS One.
9:e1109932014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jonsson S, Wiberg R, McGrath AM, Novikov
LN, Wiberg M, Novikova LN and Kingham PJ: Effect of delayed
peripheral nerve repair on nerve regeneration, Schwann cell
function and target muscle recovery. PLoS One. 8:e564842013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Evans GR, Brandt K, Katz S, Chauvin P,
Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG and Patrick
CW Jr: Bioactive poly (L-lactic acid) conduits seeded with Schwann
cells for peripheral nerve regeneration. Biomaterials. 23:841–848.
2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang H, Zhang H, Liu M and Wang N: Distal
segment extracts of the degenerated rat sciatic nerve induce bone
marrow stromal cells to express Schwann cell markers in vitro.
Neurosci Lett. 544:89–93. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ladak A, Olson J, Tredget EE and Gordon T:
Differentiation of mesenchymal stem cells to support peripheral
nerve regeneration in a rat model. Exp Neurol. 228:242–252. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ferroni L, Gardin C, Tocco I, Epis R,
Casadei A, Vindigni V, Mucci G and Zavan B: Potential for neural
differentiation of mesenchymal stem cells. Adv Biochem Eng
Biotechnol. 129:89–115. 2013.
|
18
|
Ghidoni I, Chlapanidas T, Bucco M, Crovato
F, Marazzi M, Vigo D, Torre ML and Faustini M: Alginate cell
encapsulation: New advances in reproduction and cartilage
regenerative medicine. Cytotechnology. 58:49–56. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Harasymiak-Krzyżanowska I, Niedojadło A,
Karwat J, Kotuła L, Gil-Kulik P, Sawiuk M and Kocki J: Adipose
tissue-derived stem cells show considerable promise for
regenerative medicine applications. Cell Mol Biol Lett. 18:479–493.
2013. View Article : Google Scholar
|
20
|
Hagmann S, Moradi B, Frank S, Dreher T,
Kämmerer PW, Richter W and Gotterbarm T: FGF-2 addition during
expansion of human bone marrow-derived stromal cells alters MSC
surface marker distribution and chondrogenic differentiation
potential. Cell Prolif. 46:396–407. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Reid AJ, Sun M, Wiberg M, Downes S,
Terenghi G and Kingham PJ: Nerve repair with adipose-derived stem
cells protects dorsal root ganglia neurons from apoptosis.
Neuroscience. 199:515–522. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Barnabé GF, Schwindt TT, Calcagnotto ME,
Motta FL, Martinez G Jr, de Oliveira AC, Keim LM, D'Almeida V,
Mendez-Otero R and Mello LE: Chemically-induced RAT mesenchymal
stem cells adopt molecular properties of neuronal-like cells but do
not have basic neuronal functional properties. PLoS One.
4:e52222009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lainey E, Wolfromm A, Sukkurwala AQ, Micol
JB, Fenaux P, Galluzzi L, Kepp O and Kroemer G: EGFR inhibitors
exacerbate differentiation and cell cycle arrest induced by
retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell
Cycle. 12:2978–2991. 2013. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Lee HJ, Shin YK and Park HT: Mitogen
activated protein kinase family proteins and c-jun signaling in
injury-induced Schwann cell plasticity. Exp Neurobiol. 23:130–137.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhu H, Yang A, Du J, Li D, Liu M, Ding F,
Gu X and Liu Y: Basic fibroblast growth factor is a key factor that
induces bone marrow mesenchymal stem cells towards cells with
Schwann cell phenotype. Neurosci Lett. 559:82–87. 2014. View Article : Google Scholar
|
26
|
Guo L, Moon C, Niehaus K, Zheng Y and
Ratner N: Rac1 controls Schwann cell myelination through cAMP and
NF2/merlin. J Neurosci. 32:17251–17261. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li P, Sun H, Du M, Fa Z, Qin K, Xu W,
Zhang R, Chen L, Yao C, Xiao Z, et al: Adult rat hippocampus
soluble factors: A novel transplantation model mimicking
intracranial microenvironment for tracing the induction and
differentiation of adipose-derived stromal cells in vitro. Neurosci
Lett. 542:5–11. 2013. View Article : Google Scholar
|
28
|
Wei Y, Gong K, Zheng Z, Liu L, Wang A,
Zhang L, Ao Q, Gong Y and Zhang X: Schwann-like cell
differentiation of rat adipose-derived stem cells by indirect
co-culture with Schwann cells in vitro. Cell Prolif. 43:606–616.
2010. View Article : Google Scholar : PubMed/NCBI
|