1
|
Wu Z and Nakanishi H: Connection between
periodontitis and Alzheimer's disease: Possible roles of microglia
and leptomeningeal cells. J Pharmacol Sci. 126:8–13. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Latta CH, Sudduth TL, Weekman EM, Brothers
HM, Abner EL, Popa GJ, Mendenhall MD, Gonzalez-Oregon F, Braun K
and Wilcock DM: Determining the role of IL-4 induced
neuroinflammation in microglial activity and amyloid-β using BV2
microglial cells and APP/PS1 transgenic mice. J Neuroinflammation.
12:412015. View Article : Google Scholar
|
3
|
Zhang F and Jiang L: Neuroinflammation in
Alzheimer's disease. Neuropsychiatr Dis Treat. 11:243–256. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Doens D and Fernandez PL: Microglia
receptors and their implications in the response to amyloid β for
Alzheimer's disease pathogenesis. J Neuroinflammation. 11:482014.
View Article : Google Scholar
|
5
|
Guedes J, Cardoso AL and Pedroso de Lima
MC: Involvement of microRNA in microglia-mediated immune response.
Clin Dev Immunol. 2013:1868722013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Su W, Hopkins S, Nesser NK, Sopher B,
Silvestroni A, Ammanuel S, Jayadev S, Möller T, Weinstein J and
Garden GA: The p53 transcription factor modulates microglia
behavior through microRNA-dependent regulation of c-Maf. J Immunol.
192:358–366. 2014. View Article : Google Scholar
|
7
|
Fenn AM, Smith KM, Lovett-Racke AE,
Guerau-de-Arellano M, Whitacre CC and Godbout JP: Increased
micro-RNA 29b in the aged brain correlates with the reduction of
insulin-like growth factor-1 and fractalkine ligand. Neurobiol
Aging. 34:2748–2758. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Louafi F, Martinez-Nunez RT and
Sanchez-Elsner T: MicroRNA-155 targets SMAD2 and modulates the
response of macrophages to transforming growth factor-{beta}. J
Biol Chem. 285:41328–41336. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Duan X, Zohaib A, Li Y, Zhu B, Ye J, Wan
S, Xu Q, Song Y, Chen H and Cao S: MiR-206 modulates
lipopolysaccharide-mediated inflammatory cytokine production in
human astrocytes. Cell Signal. 27:61–68. 2015. View Article : Google Scholar
|
10
|
Fernandez AM and Torres-Alemán I: The many
faces of insulin-like peptide signalling in the brain. Nat Rev
Neurosci. 13:225–239. 2012. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Carro E, Trejo JL, Gomez-Isla T, LeRoith D
and Torres-Aleman I: Serum insulin-like growth factor I regulates
brain amyloid-beta levels. Nat Med. 8:1390–1397. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Trueba-Sáiz A, Cavada C, Fernandez AM,
Leon T, Gonzalez DA, Fortea OJ, Fortea Ormaechea J, Lleó A, Del Ser
T, Nuñez A and Torres-Aleman I: Loss of serum IGF-I input to the
brain as an early biomarker of disease onset in Alzheimer mice.
Transl Psychiatry. 3:e3302013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang W, Yu JT, Tan L, Liu QY, Wang HF and
Ma XY: Insulin-like growth factor 1 (IGF1) polymorphism is
associated with Alzheimer's disease in Han Chinese. Neurosci Lett.
531:20–23. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
15
|
Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH,
Wu CJ, Wu YC, Tzeng SL and Yang JC: Whole blood-derived microRNA
signatures in mice exposed to lipopolysaccharides. J Biomed Sci.
19:692012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Theriault P, ElAli A and Rivest S: The
dynamics of monocytes and microglia in Alzheimer's disease.
Alzheimers Res Ther. 7:412015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Suh HS, Zhao ML, Derico L, Choi N and Lee
SC: Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in
human microglia: Differential regulation by inflammatory mediators.
J Neuroinflammation. 10:372013. View Article : Google Scholar : PubMed/NCBI
|
18
|
McGeer PL and McGeer EG: Targeting
microglia for the treatment of Alzheimer's disease. Expert Opin
Ther Targets. 19:497–506. 2015. View Article : Google Scholar
|
19
|
Cai Z, Hussain MD and Yan LJ: Microglia,
neuroinflammation and beta-amyloid protein in Alzheimer's disease.
Int J Neurosci. 124:307–321. 2014. View Article : Google Scholar
|
20
|
Tan L, Yu JT, Hu N and Tan L: Non-coding
RNAs in Alzheimer's disease. Mol Neurobiol. 47:382–393. 2013.
View Article : Google Scholar
|
21
|
Schonrock N and Gotz J: Decoding the
non-coding RNAs in Alzheimer's disease. Cell Mol Life Sci.
69:3543–3559. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Muller M, Kuiperij HB, Claassen JA,
Kusters B and Verbeek MM: MicroRNAs in Alzheimer's disease:
Differential expression in hippocampus and cell-free cerebrospinal
fluid. Neurobiol Aging. 35:152–158. 2014. View Article : Google Scholar
|
23
|
Tian N, Cao Z and Zhang Y: MiR-206
decreases brain-derived neurotrophic factor levels in a transgenic
mouse model of Alzheimer's disease. Neurosci Bull. 30:191–197.
2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee ST, Chu K, Jung KH, Kim JH, Huh JY,
Yoon H, Park DK, Lim JY, Kim JM, Jeon D, et al: MiR-206 regulates
brain-derived neurotrophic factor in Alzheimer disease model. Ann
Neurol. 72:269–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xie B, Zhou H, Zhang R, Song M, Yu L, Wang
L, Liu Z, Zhang Q, Cui D, Wang X and Xu S: Serum miR-206 and
miR-132 as potential circulating biomarkers for mild cognitive
impairment. J Alzheimers Dis. 45:721–731. 2015.PubMed/NCBI
|
26
|
Jarvis K, Assis-Nascimento P, Mudd LM and
Montague JR: Beta-amyloid toxicity and reversal in embryonic rat
septal neurons. Neurosci Lett. 423:184–188. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Luo YW, Xu Y, Cao WY, Zhong XL, Duan J,
Wang XQ, Hu ZL, Li F, Zhang JY, Zhou M, et al: Insulin-like growth
factor 2 mitigates depressive behavior in a rat model of chronic
stress. Neuropharmacology. 89:318–324. 2015. View Article : Google Scholar
|
28
|
Mellott TJ, Pender SM, Burke RM, Langley
EA and Blusztajn JK: IGF2 ameliorates amyloidosis, increases
cholinergic marker expression and raises BMP9 and neurotrophin
levels in the hippocampus of the APPswePS1dE9 Alzheimer's disease
model mice. PLoS One. 9:e942872014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pascual-Lucas M, Viana da Silva S, Di
Scala M, Garcia-Barroso C, González-Aseguinolaza G, Mulle C,
Cuadrado-Tejedor M and Garcia-Osta A: Insulin-like growth factor 2
reverses memory and synaptic deficits in APP transgenic mice. EMBO
Mol Med. 6:1246–1262. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Johansson JU, Woodling NS, Wang Q, Panchal
M, Liang X, Trueba-Saiz A, Brown HD, Mhatre SD, Loui T and
Andreasson KI: Prostaglandin signaling suppresses beneficial
microglial function in Alzheimer's disease models. J Clin Invest.
125:350–364. 2015. View
Article : Google Scholar
|