1
|
McInnes IB and Schett G: The pathogenesis
of rheumatoid arthritis. N Engl J Med. 365:2205–2219. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wong JB, Ramey DR and Singh G: Long-term
morbidity, mortality, and economics of rheumatoid arthritis.
Arthritis Rheum. 44:2746–2749. 2001. View Article : Google Scholar
|
3
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang HJ, Yu CL, Kishi H, Motoki K, Mao ZB
and Muraguchi A: Suppression of experimental osteoarthritis by
adenovirus-mediated double gene transfer. Chin Med J (Engl).
119:1365–1373. 2006.
|
5
|
Huber R, Hummert C, Gausmann U, Pohlers D,
Koczan D, Guthke R and Kinne RW: Identification of intra-group,
inter-individual, and gene-specific variances in mRNA expression
profiles in the rheumatoid arthritis synovial membrane. Arthritis
Res Ther. 10:R982008. View
Article : Google Scholar : PubMed/NCBI
|
6
|
van den Berg WB: Osteoarthritis year 2010
in review: Pathomechanisms. Osteoarthritis Cartilage. 19:338–341.
2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Knevel R, Gröndal G, Huizinga TW, Visser
AW, Jónsson H, Víkingsson A, Geirsson AJ, Steinsson K and van der
Helm-van Mil AH: Genetic predisposition of the severity of joint
destruction in rheumatoid arthritis: A population-based study. Ann
Rheum Dis. 71:707–709. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bian Q, Wang YJ, Liu SF and Li YP:
Osteoarthritis: Genetic factors, animal models, mechanisms, and
therapies. Front Biosci (Elite Ed). 4:74–100. 2012. View Article : Google Scholar
|
9
|
Bax M, van Heemst J, Huizinga TW and Toes
RE: Genetics of rheumatoid arthritis: What have we learned?
Immunogenetics. 63:459–466. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun Y, Caplazi P, Zhang J, Mazloom A,
Kummerfeld S, Quinones G, Senger K, Lesch J, Peng I, Sebrell A, et
al: PILRα negatively regulates mouse inflammatory arthritis. J
Immunol. 193:860–870. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Castaño Betancourt MC, Cailotto F, Kerkhof
HJ, Cornelis FM, Doherty SA, Hart DJ, Hofman A, Luyten FP,
Maciewicz RA, Mangino M, et al: Genome-wide association and
functional studies identify the DOT1L gene to be involved in
cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci USA.
109:8218–8223. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Valdes AM, Spector TD, Tamm A, Kisand K,
Doherty SA, Dennison EM, Mangino M, Tamm A, Kerna I, Hart DJ, et
al: Genetic variation in the SMAD3 gene is associated with hip and
knee osteoarthritis. Arthritis Rheum. 62:2347–2352. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yoshida S, Arakawa F, Higuchi F, Ishibashi
Y, Goto M, Sugita Y, Nomura Y, Niino D, Shimizu K, Aoki R, et al:
Gene expression analysis of rheumatoid arthritis synovial lining
regions by cDNA microarray combined with laser microdis-section:
Up-regulation of inflammation-associated STAT1, IRF1, CXCL9,
CXCL10, and CCL5. Scand J Rheumatol. 41:170–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chanalaris A: Identification of a gene
signature for osteoarthritis by comparing microarray data from
rodent and human cartilage studies. Osteoarthritis Cartilage.
22:S348–S349. 2014. View Article : Google Scholar
|
15
|
Lu QY, Han QH, Li X, Li ZC, Pan YT, Liu L
and Fu QG: Analysis of differentially expressed genes between
rheumatoid arthritis and osteoarthritis based on the gene
co-expression network. Mol Med Rep. 10:119–124. 2014.PubMed/NCBI
|
16
|
Singh S, Snijesh V and Vennila JJ:
Rheumatoid arthritis candidate genes identification by
investigating core and periphery interaction structures.
Computational Intelligence in Medical Informatics. Muppalaneni NB
and Gunjan VK: 1st edition. Springer-Verlag; Singapore: pp. 87–96.
2015
|
17
|
Pohlers D, Beyer A, Koczan D, Wilhelm T,
Thiesen HJ and Kinne RW: Constitutive upregulation of the
transforming growth factor-beta pathway in rheumatoid arthritis
synovial fibroblasts. Arthritis Res Ther. 9:R592007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: Affy - analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smyth GK: Limma: Linear models for
microarray data. Bioinformatics and Computational Biology Solutions
Using R and Bioconductor. Gentleman R, Carey V, Huber W, Irizarry R
and Dudoit S: Springer-Verlag; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
21
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene Ontology: Tool for the unification of biology. Nat
Genet. 25:25–29. 2000. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Research.
28:27–30. 2000. View Article : Google Scholar
|
23
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID Gene Functional Classification Tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
24
|
von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: A database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25
|
He X and Zhang J: Why do hubs tend to be
essential in protein networks? PLoS Genet. 2:e882006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Olex AL, Turkett WH, Fetrow JS and Loeser
RF: Integration of gene expression data with network-based analysis
to identify signaling and metabolic pathways regulated during the
development of osteoarthritis. Gene. 542:38–45. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Koelling S, Kruegel J, Irmer M, Path JR,
Sadowski B, Miro X and Miosge N: Migratory chondrogenic progenitor
cells from repair tissue during the later stages of human
osteoarthritis. Cell Stem Cell. 4:324–335. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Clements DN, Fitzpatrick N, Carter SD and
Day PJ: Cartilage gene expression correlates with radiographic
severity of canine elbow osteoarthritis. Vet J. 179:211–218. 2009.
View Article : Google Scholar
|
31
|
Cui S, Zhang X, Hai S, Lu H, Chen Y, Li C,
Tong P, Lu F and Yuan Z: Molecular mechanisms of osteoarthritis
using gene microarrays. Acta Histochemica. 117:62–68. 2015.
View Article : Google Scholar
|
32
|
Rao ZT, Wang SQ and Wang JQ: Exploring the
osteoarthritis-related genes by gene expression analysis. Eur Rev
Med Pharmacol Sci. 18:3056–3062. 2014.PubMed/NCBI
|
33
|
Remst DF, Blom AB, Vitters EL, Bank RA,
van den Berg WB, Blaney Davidson EN and Kraan PM: Gene expression
analysis of murine and human osteoarthritis synovium reveals
elevation of transforming growth factor β-responsive genes in
osteoarthritis-related fibrosis. Arthritis Rheum. 66:647–656. 2014.
View Article : Google Scholar
|
34
|
Raine EV, Dodd AW, Reynard LN and Loughlin
J: Allelic expression analysis of the osteoarthritis susceptibility
gene COL11A1 in human joint tissues. BMC Musculoskelet Disord.
14:852013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Van Vijven JP, Luijsterburg PA, Verhagen
AP, Van Osch GJ, Kloppenburg M and Bierma-Zeinstra SM: Symptomatic
and chon-droprotective treatment with collagen derivatives in
osteoarthritis: A systematic review. Osteoarthritis Cartilage.
20:809–821. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Burton PR, Clayton DG, Cardon LR, Craddock
N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand
WH, Samani NJ, et al: Genome-wide association study of 14,000 cases
of seven common diseases and 3,000 shared controls. Nature.
447:661–678. 2007. View Article : Google Scholar
|
37
|
Hammaker D, Boyle DL and Firestein GS:
Synoviocyte innate immune responses: TANK-binding kinase-1 as a
potential therapeutic target in rheumatoid arthritis. Rheumatology
(Oxford). 51:610–618. 2012. View Article : Google Scholar
|
38
|
Lübbers J, Brink M, van de Stadt LA,
Vosslamber S, Wesseling JG, van Schaardenburg D, Rantapää-Dahlqvist
S and Verweij CL: The type I IFN signature as a biomarker of
preclinical rheumatoid arthritis. Arthritis Res Ther. 72:776–780.
2013.
|
39
|
Raterman HG, Vosslamber S, de Ridder S,
Nurmohamed MT, Lems WF, Boers M, van de Wiel M, Dijkmans BA,
Verweij CL and Voskuyl AE: The interferon type I signature towards
prediction of non-response to rituximab in rheumatoid arthritis
patients. Arthritis Res Ther. 4:R952012. View Article : Google Scholar
|
40
|
Galligan CL, Baig E, Bykerk V, Keystone EC
and Fish EN: Distinctive gene expression signatures in rheumatoid
arthritis synovial tissue fibroblast cells: Correlates with disease
activity. Genes Immun. 8:480–491. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Boyle DL, Soma K, Hodge J, Kavanaugh A,
Mandel D, Mease P, Shurmur R, Singhal AK, Wei N, Rosengren S, et
al: The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT
signalling in rheumatoid arthritis. Ann Rheum Dis. 74:1311–1316.
2015. View Article : Google Scholar :
|
42
|
Le Bon A and Tough DF: Links between
innate and adaptive immunity via type I interferon. Curr Opin
Immunol. 14:432–436. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Smith SL, Plant D, Eyre S and Barton A:
The potential use of expression profiling: Implications for
predicting treatment response in rheumatoid arthritis. Ann Rheum
Dis. 72:1118–1124. 2013. View Article : Google Scholar : PubMed/NCBI
|