1
|
Willis BC, Salazar-Cantú A, Silva-Platas
C, Fernández-Sada E, Villegas CA, Rios-Argaiz E, González-Serrano
P, Sánchez LA, Guerrero-Beltrán CE, García N, et al: Impaired
oxidative metabolism and calcium mishandling underlie cardiac
dysfunction in a rat model of post-acute isoproterenol-induced
cardiomyopathy. Am J Physiol Heart Circ Physiol. 308:H467–wH477.
2015. View Article : Google Scholar
|
2
|
Most P, Pleger ST, Völkers M, Heidt B,
Boerries M, Weichenhan D, Löffler E, Janssen PM, Eckhart AD,
Martini J, et al: Cardiac adenoviral S100A1 gene delivery rescues
failing myocardium. J Clin Invest. 114:1550–1563. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Most P, Remppis A, Pleger ST, Löffler E,
Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, et
al: Transgenic overexpression of the Ca2+-binding protein S100A1 in
the heart leads to increased in vivo myocardial contractile
performance. J Biol Chem. 278:33809–33817. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Boerries M, Most P, Gledhill JR, Walker
JE, Katus HA, Koch WJ, Aebi U and Schoenenberger CA: Ca2+
-dependent interaction of S100A1 with F1-ATPase leads to an
increased ATP content in cardiomyocytes. Mol Cell Biol.
27:4365–4373. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamasaki R, Berri M, Wu Y, Trombitás K,
McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M and
Granzier H: Titin-actin interaction in mouse myocardium: Passive
tension modulation and its regulation by calcium/S100A1. Biophys J.
81:2297–2313. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Most P, Bernotat J, Ehlermann P, Pleger
ST, Reppel M, Börries M, Niroomand F, Pieske B, Janssen PM,
Eschenhagen T, et al: S100A1: A regulator of myocardial
contractility. Proc Natl Acad Sci USA. 98:13889–13894. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Most P, Boerries M, Eicher C, Schweda C,
Völkers M, Wedel T, Söllner S, Katus HA, Remppis A, Aebi U, et al:
Distinct subcellular location of the Ca2+-binding protein S100A1
differentially modulates Ca2+-cycling in ventricular rat
cardiomyocytes. J Cell Sci. 118:421–431. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Most P, Seifert H, Gao E, Funakoshi H,
Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR Jr,
Eckhart AD, et al: Cardiac S100A1 protein levels determine
contractile performance and propensity toward heart failure after
myocardial infarction. Circulation. 114:1258–1268. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pleger ST, Shan C, Ksienzyk J, Bekeredjian
R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G,
et al: Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart
failure in a preclinical large animal model. Sci Transl Med.
3:92ra642011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pleger ST, Most P, Boucher M, Soltys S,
Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, et al:
Stable myocardial-specific AAV6-S100A1 gene therapy results in
chronic functional heart failure rescue. Circulation.
115:2506–2515. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ross PL, Huang YN, Marchese JN, Williamson
B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et
al: Multiplexed protein quantitation in Saccharomyces cerevisiae
using amine-reactive isobaric tagging reagents. Mol Cell
Proteomics. 3:1154–1169. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Institute of Laboratory Animal Resources
(US); Committee on Care, Use of Laboratory Animals National
Institutes of Health (US); Division of Research Resources: Guide
for the care and use of laboratory animals. 8th edition. National
Academies Press; Washington, DC: 2011
|
13
|
Stanley WC, Lopaschuk GD, Hall JL and
McCormack JG: Regulation of myocardial carbohydrate metabolism
under normal and ischaemic conditions. Potential for
pharmacological interventions. Cardiovasc Res. 33:243–257. 1997.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tang B, Li Y, Zhao L, Yuan S, Wang Z, Li B
and Chen Q: Stable isotope dimethyl labeling combined with LTQ mass
spectrometric detection, a quantitative proteomics technology used
in liver cancer research. Biomed Rep. 1:549–554. 2013.
|
15
|
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal
JS and Stanley WC: Myocardial fatty acid metabolism in health and
disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Andresen BS, Olpin S, Poorthuis BJ,
Scholte HR, Vianey-Saban C, Wanders R, Ijlst L, Morris A,
Pourfarzam M, Bartlett K, et al: Clear correlation of genotype with
disease phenotype in very-long-chain acyl-CoA dehydrogenase
deficiency. Am J Hum Genet. 64:479–494. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Raha S and Robinson BH: Mitochondria,
oxygen free radicals, disease and ageing. Trends Biochem Sci.
25:502–508. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Carafoli E: Calcium-a universal carrier of
biological signals. Delivered on 3 July 2003 at the special FEBS
meeting in Brussels. FEBS J. 272:1073–1089. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Heizmann CW, Ackermann GE and Galichet A:
Pathologies involving the S100 proteins and rage. Subcell Biochem.
45:93–138. 2007. View Article : Google Scholar
|
20
|
Most P, Remppis A, Pleger ST, Katus HA and
Koch WJ: S100A1: A novel inotropic regulator of cardiac
performance. Transition from molecular physiology to
pathophysiological relevance. Am J Physiol Regul Integr Comp
Physiol. 293:R568–R577. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Völkers M, Loughrey CM, Macquaide N,
Remppis A, DeGeorge BR Jr, Wegner FV, Friedrich O, Fink RH, Koch
WJ, Smith GL and Most P: S100A1 decreases calcium spark frequency
and alters their spatial characteristics in permeabilized adult
ventricular cardiomyocytes. Cell Calcium. 41:135–143. 2007.
View Article : Google Scholar
|
22
|
Kettlewell S, Most P, Currie S, Koch WJ
and Smith GL: S100A1 increases the gain of excitation-contraction
coupling in isolated rabbit ventricular cardiomyocytes. J Mol Cell
Cardiol. 39:900–910. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kobayashi T and Solaro RJ: Calcium, thin
filaments and the integrative biology of cardiac contractility.
Annu Rev Physiol. 67:39–67. 2005. View Article : Google Scholar
|
24
|
Lehman W and Craig R: Tropomyosin and the
steric mechanism of muscle regulation. Adv Exp Med Biol.
644:95–109. 2008. View Article : Google Scholar
|
25
|
Zhi G, Herring BP and Stull JT: Structural
requirements for phosphorylation of myosin regulatory light chain
from smooth muscle. J Biol Chem. 269:24723–24727. 1994.PubMed/NCBI
|
26
|
Chan JY, Takeda M, Briggs LE, Graham ML,
Lu JT, Horikoshi N, Weinberg EO, Aoki H, Sato N, Chien KR and
Kasahara H: Identification of cardiac-specific myosin light chain
kinase. Circ Res. 102:571–580. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Andreev OA, Saraswat LD, Lowey S,
Slaughter C and Borejdo J: Interaction of the N-terminus of chicken
skeletal essential light chain 1 with F-actin. Biochemistry.
38:2480–2485. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Timson DJ, Trayer HR and Trayer IP: The
N-terminus of A1-type myosin essential light chains binds actin and
modulates myosin motor function. Eur J Biochem. 255:654–662. 1998.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Timson DJ, Trayer HR, Smith KJ and Trayer
IP: Size and charge requirements for kinetic modulation and actin
binding by alkali 1-type myosin essential light chains. J Biol
Chem. 274:18271–18277. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Abdelaziz AI, Segaric J, Bartsch H,
Petzhold D, Schlegel WP, Kott M, Seefeldt I, Klose J, Bader M,
Haase H and Morano I: Functional characterization of the human
atrial essential myosin light chain (hALC–1) in a transgenic rat
model. J Mol Med (Berl). 82:265–274. 2004. View Article : Google Scholar
|
31
|
Fewell JG, Hewett TE, Sanbe A, Klevitsky
R, Hayes E, Warshaw D, Maughan D and Robbins J: Functional
significance of cardiac myosin essential light chain isoform
switching in transgenic mice. J Clin Invest. 101:2630–2639. 1998.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Morano M, Zacharzowski U, Maier M, Lange
PE, Alexi-Meskishvili V, Haase H and Morano I: Regulation of human
heart contractility by essential myosin light chain isoforms. J
Clin Invest. 98:467–473. 1996. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moretti A, Weig HJ, Ott T, Seyfarth M,
Holthoff HP, Grewe D, Gillitzer A, Bott-Flügel L, Schömig A,
Ungerer M and Laugwitz KL: Essential myosin light chain as a target
for caspase-3 in failing myocardium. Proc Natl Acad Sci USA.
99:11860–11865. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hightower LE and Guidon PT Jr: Selective
release from cultured mammalian cells of heat-shock (stress)
proteins that resemble glia-axon transfer proteins. J Cell Physiol.
138:257–266. 1989. View Article : Google Scholar : PubMed/NCBI
|
35
|
Knowlton AA, Eberli FR, Brecher P, Romo
GM, Owen A and Apstein CS: A single myocardial stretch or decreased
systolic fiber shortening stimulates the expression of heat shock
protein 70 in the isolated, erythrocyte-perfused rabbit heart. J
Clin Invest. 88:2018–2025. 1991. View Article : Google Scholar : PubMed/NCBI
|
36
|
Trost SU, Omens JH, Karlon WJ, Meyer M,
Mestril R, Covell JW and Dillmann WH: Protection against myocardial
dysfunction after a brief ischemic period in transgenic mice
expressing inducible heat shock protein 70. J Clin Invest.
101:855–862. 1998. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Dybdahl B, Wahba A, Lien E, Flo TH, Waage
A, Qureshi N, Sellevold OF, Espevik T and Sundan A: Inflammatory
response after open heart surgery: Release of heat-shock protein 70
and signaling through toll-like receptor-4. Circulation.
105:685–690. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang S, Guo J, Zhang P, Liu Y, Jia Z,
Feng X, Li Z, Li W, Ma K, Zhou C and Li L: Transplantation of bone
marrow cells up-regulated the expressions of HSP32 and HSP70 in the
acute ischemic myocardium. Beijing Da Xue Xue Bao. 35:476–480.
2003.In Chinese. PubMed/NCBI
|