1
|
Cohen MH, Moses ML and Pazdur R: Gleeve™
for the treatment of chronic myelogenous leukemia: U.S. food and
drug administration regulatory mechanisms, accelerated approval,
and orphan drug status. Oncologist. 7:390–392. 2002. View Article : Google Scholar
|
2
|
Tibullo D, Barbagallo I, Giallongo C, La
Cava P, Branca A, Conticello C, Stagno F, Chiarenza A, Palumbo GA
and Di Raimondo F: Effects of second-generation tyrosine kinase
inhibitors towards osteogenic differentiation of human mesenchymal
cells of healthy donors. Hematol Oncol. 30:27–33. 2012. View Article : Google Scholar
|
3
|
O'Sullivan S, Lin JM, Watson M, Callon K,
Tong PC, Naot D, Horne A, Aati O, Porteous F, Gamble G, et al: The
skeletal effects of the tyrosine kinase inhibitor nilotinib. Bone.
49:281–289. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wihlidal P, Karlic H, Pfeilstöcker M,
Klaushofer K and Varga F: Imatinib mesylate (IM)-induced growth
inhibition is associated with production of spliced
osteocalcin-mRNA in cell lines. Leuk Res. 32:437–443. 2008.
View Article : Google Scholar
|
5
|
Tibullo D, Giallongo C, La Cava P,
Berretta S, Stagno F, Chiarenza A, Conticello C, Palumbo GA and Di
Raimondo F: Effects of imatinib mesylate in osteoblastogenesis. Exp
Hematol. 37:461–468. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
O'Sullivan S, Naot D, Callon K, Porteous
F, Horne A, Wattie D, Watson M, Cornish J, Browett P and Grey A:
Imatinib promotes osteoblast differentiation by inhibiting PDGFR
signaling and inhibits osteoclastogenesis by both direct and
stromal cell-dependent mechanisms. J Bone Miner Res. 22:1679–1689.
2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fitter S, Dewar AL, Kostakis P, To LB,
Hughes TP, Roberts MM, Lynch K, Vernon-Roberts B and Zannettino AC:
Long-term imatinib therapy promotes bone formation in CML patients.
Blood. 111:2538–2547. 2008. View Article : Google Scholar
|
8
|
Jönsson S, Hjorth-Hansen H, Olsson B,
Wadenvik H, Sundan A and Standal T: Imatinib inhibits proliferation
of human mesenchymal stem cells and promotes early but not late
osteoblast differentiation in vitro. J Bone Miner Metab.
30:119–123. 2012. View Article : Google Scholar
|
9
|
Fierro F, Illmer T, Jing D, Schleyer E,
Ehninger G, Boxberger S and Bornhauser M: Inhibition of
platelet-derived growth factor receptorbeta by imatinib mesylate
suppresses proliferation and alters differentiation of human
mesenchymal stem cells in vitro. Cell Prolif. 40:355–366. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Vandyke K, Fitter S, Dewar AL, Hughes TP
and Zannettino AC: Dysregulation of bone remodeling by imatinib
mesylate. Blood. 115:766–774. 2010. View Article : Google Scholar
|
11
|
Benito R, Lumbreras E, Abáigar M,
Gutiérrez NC, Delgado M, Robledo C, García JL, Rodríguez-Vicente
AE, Cañizo MC and Rivas JM: Imatinib therapy of chronic myeloid
leukemia restores the expression levels of key genes for DNA damage
and cell-cycle progression. Pharmacogenet Genomics. 22:381–388.
2012.PubMed/NCBI
|
12
|
Vandyke K, Fitter S, Drew J, Fukumoto S,
Schultz CG, Sims NA, Yeung DT, Hughes TP and Zannettino AC:
Prospective histomorphometric and DXA evaluation of bone remodeling
in imatinib-treated CML patients: Evidence for site-specific
skeletal effects. J Clin Endocrinol Metab. 98:67–76. 2013.
View Article : Google Scholar
|
13
|
Berman E, Nicolaides M, Maki RG, Fleisher
M, Chanel S, Scheu K, Wilson BA, Heller G and Sauter NP: Altered
bone and mineral metabolism in patients receiving imatinib
mesylate. N Engl J Med. 354:2006–2013. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Berman E, Girotra M, Cheng C, Chanel S,
Maki R, Shelat M, Strauss HW, Fleisher M, Heller G and Farooki A:
Effect of long term imatinib on bone in adults with chronic
myelogenous leukemia and gastrointestinal stromal tumors. Leuk Res.
37:790–794. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jonsson S, Olsson B, Ohlsson C, Lorentzon
M, Mellström D and Wadenvik H: Increased cortical bone
mineralization in imatinib treated patients with chronic
myelogenous leukemia. Haematologica. 93:1101–1103. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
O'Sullivan S, Horne A, Wattie D, Porteous
F, Callon K, Gamble G, Ebeling P, Browett P and Grey A: Decreased
bone turnover despite persistent secondary hyperparathyroidism
during prolonged treatment with imatinib. J Clin Endocrinol Metab.
94:1131–1136. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hoehn D, Medeiros LJ, Kantarjian HM,
Cortes JE, Wang XM and Bueso-Ramos CE: Digital image analysis as a
tool to assess the effects of imatinib on trabecular bone in
patients with chronic myelogenous leukemia. Hum Pathol.
43:2354–2359. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lawrence L: Long-term treatment with
imatinib affected bone mineral density. Cancer Network; 2013
|
19
|
Reiner A, Yekutieli D and Benjamini Y:
Identifying differentially expressed genes using false discovery
rate controlling procedures. Bioinformatics. 19:368–375. 2003.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Yoav Benjamini YH: Controlling the false
discovery rate: A practical and powerful approach to multiple
testing. J R Stat Soc Series B Stat Methodol. 57:289–300. 1995.
|
21
|
Onishi M, Fujita Y, Yoshikawa H and
Yamashita T: Inhibition of Rac1 promotes BMP-2-induced osteoblastic
differentiation. Cell Death Dis. 4:e6982013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma Z, Thomas KS, Webb DJ, Moravec R,
Salicioni AM, Mars WM and Gonias SL: Regulation of Rac1 activation
by the low density lipoprotein receptor-related protein. J Cell
Biol. 159:1061–1070. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li S, Guo HB, Liu YS, Wu F, Zhang H, Zhang
Z, Xie Z, Sheng Z and Liao E: Relationships of serum lipid profiles
and bone mineral density in postmenopausal Chinese women. Clin
Endocrinol (Oxf). 82:53–58. 2015. View Article : Google Scholar
|
24
|
Lotinun S, Scott Pearsall R, Horne WC and
Baron R: Activin receptor signaling: A potential therapeutic target
for osteoporosis. Curr Mol Pharmacol. 5:S195–S204. 2012. View Article : Google Scholar
|
25
|
Chanprasertyothin S, Saetung S,
Rajatanavin R and Ongphiphadhanakul B: Genetic variant in the
aquaporin 9 gene is associated with bone mineral density in
postmenopausal women. Endocrine. 38:83–86. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Aharon R and Bar-Shavit Z: Involvement of
aquaporin 9 in osteoclast differentiation. J Biol Chem.
281:19305–19309. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Y, Song L, Wang Y, Rojek A, Nielsen S,
Agre P and Carbrey JM: Osteoclast differentiation and function in
aquaglyceroporin AQP9-null mice. Biol Cell. 101:133–140. 2009.
View Article : Google Scholar
|
28
|
Kraus DM, Elliott GS, Chute H, Horan T,
Pfenninger KH, Sanford SD, Foster S, Scully S, Welcher AA and
Holers VM: CSMD1 is a novel multiple domain complement-regulatory
protein highly expressed in the central nervous system and
epithelial tissues. J Immunol. 176:4419–4430. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hiramitsu S, Terauchi M and Kubota T: The
effects of Dickkopf-4 on the proliferation, differentiation, and
apoptosis of osteoblasts. Endocrinology. 154:4618–4626. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bais M, McLean J, Sebastiani P, Young M,
Wigner N, Smith T, Kotton DN, Einhorn TA and Gerstenfeld LC:
Transcriptional analysis of fracture healing and the induction of
embryonic stem cell-related genes. PLoS One. 4:e53932009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Aleman JO, Farooki A and Girotra M:
Effects of tyrosine kinase inhibition on bone metabolism:
Untargeted consequences of targeted therapies. Endocr Relat Cancer.
21:R247–R259. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rix U, Hantschel O, Düernberger G, Remsing
Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P,
Colinge J, et al: Chemical proteomic profiles of the BCR-ABL
inhibitors imatinib, nilotinib and dasatinib, reveal novel kinase
and nonkinase targets. Blood. 110:4055–4063. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang JY, Jung JY, Cho SW, Choi HJ, Kim SW,
Kim SY, Kim HJ, Jang CH, Lee MG, Han J and Shin CS: Chloride
intracellular channel 1 regulates osteoblast differentiation. Bone.
45:1175–1185. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fujimori S, Hinoi E and Yoneda Y:
Functional GABA (B) receptors expressed in cultured calvarial
osteoblasts. Biochem Biophys Res Commun. 293:1445–1452. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mentink A, Hulsman M, Groen N, Licht R,
Dechering KJ, van der Stok J, Alves HA, Dhert WJ, van Someren EP,
Reinders MJ, et al: Predicting the therapeutic efficacy of MSC in
bone tissue engineering using the molecular marker CADM1.
Biomaterials. 34:4592–4601. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Muhammad SI, Maznah I, Mahmud R, Zuki AB
and Imam MU: Upregulation of genes related to bone formation by
γ-amino butyric acid and gamma-oryzanol in germinated brown rice is
via the activation of GABA (B)-receptors and reduction of serum
IL-6 in rats. Clin Interv Aging. 8:1259–1271. 2013. View Article : Google Scholar :
|
37
|
Takahata Y, Takarada T, Hinoi E, Nakamura
Y, Fujita H and Yoneda Y: Osteoblastic γ-aminobutyric acid, type B
receptors negatively regulate osteoblastogenesis toward disturbance
of osteoclastogenesis mediated by receptor activator of nuclear
factor κB ligand in mouse bone. J Biol Chem. 286:32906–32917. 2011.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Schrauwen I, Ealy M, Huentelman MJ, Thys
M, Homer N, Vanderstraeten K, Fransen E, Corneveaux JJ, Craig DW,
Claustres M, et al: A genome-wide analysis identifies genetic
variants in the RELN gene associated with otosclerosis. Am J Hum
Genet. 84:328–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
May P, Herz J and Bock HH: Molecular
mechanisms of lipo-protein receptor signalling. Cell Mol Life Sci.
62:2325–2338. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Westbroek I, van der Plas A, de Rooij KE,
Klein-Nulend J and Nijweide PJ: Expression of serotonin receptors
in bone. J Biol Chem. 276:28961–28968. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bliziotes MM, Eshleman AJ, Zhang XW and
Wiren KM: Neurotransmitter action in osteoblasts: Expression of a
functional system for serotonin receptor activation and reuptake.
Bone. 29:477–486. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dai SQ, Yu LP, Shi X, Wu H, Shao P, Yin GY
and Wei YZ: Serotonin regulates osteoblast proliferation and
function in vitro. Braz J Med Biol Res. 47:759–765. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yadav VK and Karsenty G: Serotonin: A new
player in the regulation of bone remodeling. Medicographia.
32:357–363. 2010.
|
44
|
Bliziotes M: Update in serotonin and bone.
J Clin Endocrinol Metab. 95:4124–4132. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ducy P and Karsenty G: The two faces of
serotonin in bone biology. J Cell Biol. 191:7–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Battaglino R, Fu J, Späte U, Ersoy U, Joe
M, Sedaghat L and Stashenko P: Serotonin regulates osteoclast
differentiation through its transporter. J Bone Miner Res.
19:1420–1431. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Saito A, Ochiai K, Kondo S, Tsumagari K,
Murakami T, Cavener DR and Imaizumi K: Endoplasmic reticulum stress
response mediated by the PERK-eIF2 alpha-ATF4 pathway is involved
in osteoblast differentiation induced by BMP2. J Biol Chem.
286:4809–4818. 2011. View Article : Google Scholar
|
48
|
Hamamura K and Yokota H: Stress to
endoplasmic reticulum of mouse osteoblasts induces apoptosis and
transcriptional activation for bone remodeling. FEBS Lett.
581:1769–1774. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hirasawa H, Jiang C, Zhang P, Yang FC and
Yokota H: Mechanical stimulation suppresses phosphorylation of
eIF2alpha and PERK-mediated responses to stress to the endoplasmic
reticulum. FEBS Lett. 584:745–752. 2010. View Article : Google Scholar
|
50
|
Bais MV, Shabin ZM, Young M, Einhorn TA,
Kotton DN and Gerstnefeld LC: Role of Nanog in the maintenance of
marrow stromal stem cells during post natal bone regeneration.
Biochem Biophys Res Commun. 417:211–216. 2012. View Article : Google Scholar :
|
51
|
Suzuki A, Raya A, Kawakami Y, Morita M,
Matsui T, Nakashima K, Gaget FH, Rodríguez-Esteban C and Izpisúa
Belmonte JC: Nanog binds to Smad1 and blocks bone morphogenetic
protein-induced differentiation of embryonic stem cells. Proc Natl
Acad Sci USA. 103:10294–10299. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Daluiski A, Engstrand T, Bahamonde ME,
Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V and Lyons KM: Bone
morphogenetic protein-3 is a negative regulator of bone density.
Nat Genet. 27:84–88. 2001. View
Article : Google Scholar : PubMed/NCBI
|
53
|
Bahamonde ME and Lyons KM: BMP3: To be or
not to be a BMP. J Bone Joint Surg. 83-A(Suppl 1): S56–S62.
2001.PubMed/NCBI
|