1
|
Kumar A, Shrestha PR, Pun J, Thapa P,
Manandhar M and Sathian B: Profile of skin biopsies and patterns of
skin cancer in a tertiary care center of Western Nepal. Asian Pac J
Cancer Prev. 16:3403–3406. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jiang YJ and Bikle DD: LncRNA: A new
player in 1α, 25(OH)(2) vitamin D(3)/VDR protection against skin
cancer formation. Exp Dermatol. 23:147–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Singh T and Katiyar SK: Green tea
polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in
human skin cancer cells by targeting β-catenin signaling. Toxicol
Appl Pharmacol. 273:418–424. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J,
Ohsugi M, Onda M, Hirai M, Fujimoto J and Yamamoto T: Tob2, a novel
anti-proliferative Tob/BTG1 family member, associates with a
component of the CCR4 transcriptional regulatory complex capable of
binding cyclin-dependent kinases. Oncogene. 18:7432–7441. 1999.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Buanne P, Corrente G, Micheli L, Palena A,
Lavia P, Spadafora C, Lakshmana MK, Rinaldi A, Banfi S, Quarto M,
et al: Cloning of PC3B, a novel member of the PC3/BTG/TOB family of
growth inhibitory genes, highly expressed in the olfactory
epithelium. Genomics. 68:253–263. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lim IK: TIS21 (/BTG2/PC3) as a link
between ageing and cancer: Cell cycle regulator and endogenous cell
death molecule. J Cancer Res Clin Oncol. 132:417–426. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Winkler GS: The mammalian
anti-proliferative BTG/Tob protein family. J Cell Physiol.
222:66–72. 2010. View Article : Google Scholar
|
8
|
Duriez C, Moyret-Lalle C, Falette N,
El-Ghissassi F and Puisieux A: BTG2, its family and its tutor. Bull
Cancer. 91:E242–E253. 2004.PubMed/NCBI
|
9
|
Zhang Y-J, Wei L, Liu M, Li J, Zheng Y-Q,
Gao Y and Li X-R: BTG2 inhibits the proliferation, invasion, and
apoptosis of MDA-MB-231 triple-negative breast cancer cells. Tumor
Biol. 34:1605–1613. 2013. View Article : Google Scholar
|
10
|
Devanand P, Kim SI, Choi YW, Sheen SS, Yim
H, Ryu MS, Kim SJ, Kim WJ and Lim IK: Inhibition of bladder cancer
invasion by Sp1-mediated BTG2 expression via inhibition of DNA
methyltransferase 1. FEBS J. 281:5581–5601. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
el-Ghissassi F, Valsesia-Wittmann S,
Falette N, Duriez C, Walden PD and Puisieux A: BTG2 (TIS21/PC3)
induces neuronal differentiation and prevents apoptosis of
terminally differentiated PC12 cells. Oncogene. 21:6772–6778. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Boiko AD, Porteous S, Razorenova OV,
Krivokrysenko VI, Williams BR and Gudkov AV: A systematic search
for downstream mediators of tumor suppressor function of p53
reveals a major role of BTG2 in suppression of Ras-induced
transformation. Genes Dev. 20:236–252. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lim YB, Park TJ and Lim IK: B cell
translocation gene 2 enhances susceptibility of HeLa cells to
doxorubicin-induced oxidative damage. J Biol Chem. 283:33110–33118.
2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang L, Huang H, Wu K, Wang M and Wu B:
Impact of BTG2 expression on proliferation and invasion of gastric
cancer cells in vitro. Mol Biol Rep. 37:2579–2586. 2010. View Article : Google Scholar
|
15
|
Möllerström E, Kovács A, Lövgren K, Nemes
S, Delle U, Danielsson A, Parris T, Brennan DJ, Jirström K,
Karlsson P and Helou K: Up-regulation of cell cycle arrest protein
BTG2 correlates with increased overall survival in breast cancer,
as detected by immunohistochemistry using tissue microarray. BMC
Cancer. 10:2962010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li J, Ji L, Chen J, Zhang W and Ye Z:
Wnt/β-catenin signaling pathway in skin carcinogenesis and therapy.
Biomed Res Int. 2015:9648492015.
|
17
|
Kuphal S and Bosserhoff AK:
Phosphorylation of β-catenin results in lack of β-catenin signaling
in melanoma. Int J Oncol. 39:235–243. 2011.PubMed/NCBI
|
18
|
Kang MI, Baker AR, Dextras CR, Cabarcas
SM, Young MR and Colburn NH: Targeting of noncanonical Wnt5a
signaling by AP-1 blocker dominant-negative Jun when it inhibits
skin carcinogenesis. Genes Cancer. 3:37–50. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bhatia N and Spiegelman VS: Activation of
Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Mol
Carcinog. 42:213–221. 2005. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Z, Chen C, Wang G, Yang Z, San J,
Zheng J, Li Q, Luo X, Hu Q, Li Z and Wang D: Aberrant expression of
the p53-inducible antiproliferative gene BTG2 in hepatocellular
carcinoma is associated with overexpression of the cell
cycle-related proteins. Cell Biochem Biophys. 61:83–91. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Horvilleur E, Bauer M, Goldschneider D,
Mergui X, de la Motte A, Bénard J, Douc-Rasy S and Cappellen D:
p73alpha isoforms drive opposite transcriptional and
post-transcriptional regulation of MYCN expression in neuroblastoma
cells. Nucleic Acids Res. 36:4222–4232. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang CH, Yue J, Pfeffer SR, Handorf CR and
Pfeffer LM: MicroRNA miR-21 regulates the metastatic behavior of
B16 melanoma cells. J Biol Chem. 286:39172–39178. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Takahashi F, Chiba N, Tajima K, Hayashida
T, Shimada T, Takahashi M, Moriyama H, Brachtel E, Edelman E,
Ramaswamy S and Maheswaran S: Breast tumor progression induced by
loss of BTG2 expression is inhibited by targeted therapy with the
ErbB/HER inhibitor lapatinib. Oncogene. 30:3084–3095. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Segev DL, Kucirka LM, Oberai PC, Parekh
RS, Boulware LE, Powe NR and Montgomery RA: Age and comorbidities
are effect modifiers of gender disparities in renal
transplantation. J Am Soc Nephrol. 20:621–628. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu M, Wu H, Liu T, Li Y, Wang F, Wan H,
Li X and Tang H: Regulation of the cell cycle gene, BTG2, by miR-21
in human laryngeal carcinoma. Cell Res. 19:828–837. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hagan S, Al-Mulla F, Mallon E, Oien K,
Ferrier R, Gusterson B, García JJ and Kolch W: Reduction of Raf-1
kinase inhibitor protein expression correlates with breast cancer
metastasis. Clin Cancer Res. 11:7392–7397. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kawakubo H, Brachtel E, Hayashida T, Yeo
G, Kish J, Muzikansky A, Walden PD and Maheswaran S: Loss of B-cell
translocation gene-2 in estrogen receptor-positive breast carcinoma
is associated with tumor grade and overexpression of cyclin d1
protein. Cancer Res. 66:7075–7082. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saito-Diaz K, Chen TW, Wang X, Thorne CA,
Wallace HA, Page-McCaw A and Lee E: The way Wnt works: Components
and mechanism. Growth Factors. 31:1–31. 2013. View Article : Google Scholar :
|
29
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang J, Wang X, Gong W, Mi B, Liu S and
Jiang B: Increased expression of beta-catenin, phosphorylated
glycogen synthase kinase 3beta, cyclin D1, and c-myc in laterally
spreading colorectal tumors. J Histochem Cytochem. 57:363–371.
2009. View Article : Google Scholar :
|
31
|
Ripple MJ, Parker Struckhoff A,
Trillo-Tinoco J, Li L, Margolin DA, McGoey R and Del Valle L:
Activation of c-Myc and Cyclin D1 by JCV T-Antigen and β-catenin in
Colon Cancer. PLoS One. 9:e1062572014. View Article : Google Scholar
|
32
|
Baldin V, Lukas J, Marcote M, Pagano M and
Draetta G: Cyclin D1 is a nuclear protein required for cell cycle
progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dang CV: c-Myc target genes involved in
cell growth, apoptosis, and metabolism. Mol Cell Biol. 19:1–11.
1999. View Article : Google Scholar
|