Notch signaling in cerebrovascular diseases (Review)
- Authors:
- Zhiyou Cai
- Bin Zhao
- Yanqing Deng
- Shouqin Shangguan
- Faming Zhou
- Wenqing Zhou
- Xiaoli Li
- Yanfeng Li
- Guanghui Chen
-
Affiliations: Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China, Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China - Published online on: August 19, 2016 https://doi.org/10.3892/mmr.2016.5641
- Pages: 2883-2898
-
Copyright: © Cai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lama S, Dolati P and Sutherland GR: Controversy in the management of lenticulostriate artery dissecting aneurysm: A case report and review of the literature. World Neurosurg. 81:441.e1–e7. 2014. View Article : Google Scholar | |
Dezmalj-Grbelja L, Bosnjak J, Lovrencić-Huzjan A, Ivica M and Demarin V: Moyamoya disease in a patient with brain tumor: Case report. Acta Clin Croat. 49:459–463. 2010. | |
Sharfstein SR, Ahmed S, Islam MQ, Najjar MI and Ratushny V: Case of moyamoya disease in a patient with advanced acquired immunodeficiency syndrome. J Stroke Cerebrovasc Dis. 16:268–272. 2007. View Article : Google Scholar : PubMed/NCBI | |
Squizzato A, Gerdes VE, Brandjes DP, Büller HR and Stam J: Thyroid diseases and cerebrovascular disease. Stroke. 36:2302–2310. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vetrano DL, Landi F, De Buyser SL, Carfi A, Zuccalà G, Petrovic M, Volpato S, Cherubini A, Corsonello A, Bernabei R and Onder G: Predictors of length of hospital stay among older adults admitted to acute care wards: A multicentre observational study. Eur J Intern Med. 25:56–62. 2014. View Article : Google Scholar | |
Cicconetti P, Riolo N, Priami C, Tafaro L and Ettore E: Risk factors for cognitive impairment. Recenti Prog Med. 95:535–545. 2004.In Italian. PubMed/NCBI | |
Elkind MS: Epidemiology and risk factors. Continuum (Minneap Minn). 17:1213–1232. 2011. | |
Jia Q, Liu LP and Wang YJ: Stroke in China. Clin Exp Pharmacol Physiol. 37:259–264. 2010. View Article : Google Scholar | |
Bhoopathi P, Chetty C, Dontula R, Gujrati M, Dinh DH, Rao JS and Lakka SS: SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res. 71:4908–4919. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yuan TM and Yu HM: Notch signaling: Key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res. 88:461–468. 2010. | |
Veenendaal LM, Kranenburg O, Smakman N, Klomp A, Borel Rinkes IH and van Diest PJ: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol. 30:1–11. 2008.PubMed/NCBI | |
Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J and Bongarzone ER: Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci. 28:81–91. 2006. View Article : Google Scholar : PubMed/NCBI | |
Quillard T and Charreau B: Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci. 14:6863–6888. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A and Yang X: Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell. 20:291–302. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dichgans M: Genetics of ischaemic stroke. Lancet Neurol. 6:149–161. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C and Ling EA: Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation. 12:112015. View Article : Google Scholar : PubMed/NCBI | |
Cheng YL, Choi Y, Sobey CG, Arumugam TV and Jo DG: Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther. 147:80–90. 2015. View Article : Google Scholar | |
Wang Z, Huang W and Zuo Z: Perioperative aspirin improves neurological outcome after focal brain ischemia possibly via inhibition of Notch 1 in rat. J Neuroinflammation. 11:562014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zyang X, Wang Y, Ji H, Du Y and Liu H: DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and nuclear factor κB in rats. Neurol Sci. 33:1257–1264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295. 2014. View Article : Google Scholar | |
Wang L, Chopp M, Zhang RL, Zhang L, Letourneau Y, Feng YF, Jiang A, Morris DC and Zhang ZG: The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience. 158:1356–1363. 2009. View Article : Google Scholar : | |
Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H and Chan SL: Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke. 42:2589–2594. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgan TH: The theory of the gene. Am Naturalist. 51:513–544. 1917. View Article : Google Scholar | |
Becker S, Oelschlaeger TA, Wullaert A, Vlantis K, Pasparakis M, Wehkamp J, Stange EF and Gersemann M: Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One. 8:e556202013. View Article : Google Scholar : PubMed/NCBI | |
Maier D, Kurth P, Schulz A, Russell A, Yuan Z, Gruber K, Kovall RA and Preiss A: Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Mol Biol Cell. 22:3242–3252. 2011. View Article : Google Scholar : PubMed/NCBI | |
Braune EB and Lendahl U: Notch-a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 21:189–196. 2016.PubMed/NCBI | |
Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL. PLoS One. 5:e150342010. View Article : Google Scholar : PubMed/NCBI | |
Faux CH, Turnley AM, Epa R, Cappai R and Bartlett PF: Interactions between fbroblast growth factors and Notch regulate neuronal differentiation. J Neurosci. 21:5587–5596. 2001.PubMed/NCBI | |
Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y and Hirai H: Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 274:32961–32969. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Neoplasia. 16:158–167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl. 35(Suppl): S46–S53. 2000. View Article : Google Scholar | |
Nam Y, Weng AP, Aster JC and Blacklow SC: Structural requirements for assembly of the CSL. Intracellular Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem. 278:21232–21239. 2003. View Article : Google Scholar : PubMed/NCBI | |
Portin P: General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster. A review Hereditas. 136:89–96. 2002. View Article : Google Scholar | |
Li Y and Baker NE: Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol. 11:330–338. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y and Yang R: Lingo-1 shRNA and Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into. neurons Brain Res. 1634:34–44. 2016. View Article : Google Scholar | |
Cardano M, Diaferia GR, Cattaneo M, Dessí SS, Long Q, Conti L, Deblasio P, Cattaneo E and Biunno I: mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment. J Biol Chem. 286:18708–18719. 2011. View Article : Google Scholar : PubMed/NCBI | |
Berezovska O, Xia MQ and Hyman BT: Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol. 57:738–745. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nagarsheth MH, Viehman A, Lippa SM and Lippa CF: Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease. J Neurol Sci. 244:111–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cairney CJ, Sanguinetti G, Ranghini E, Chantry AD, Nostro MC, Bhattacharyya A, Svendsen CN, Keith WN and Bellantuono I: A systems biology approach to Down syndrome: Identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim Biophys Acta. 1792:353–363. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Martinez J, Vela EM, Tora-Ponsioen M, Ocaña OH, Nieto MA and Galceran J: Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J Cell Sci. 122:1574–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
García-Estévez DA, Barros-Angueira F and Navarro C: CADASIL: Brief report on a family with a new p.G296C mutation in exon 6 of the Notch-3 gene. Rev Neurol. 51:729–732. 2010.In Spanish. | |
Tang SC, Jeng JS, Lee MJ and Yip PK: Notch signaling and CADASIL. Acta Neurol Taiwan. 18:81–90. 2009.PubMed/NCBI | |
Louvi A, Arboleda-Velasquez JF and Artavanis-Tsakonas S: CADASIL: A critical look at a Notch disease. Dev Neurosci. 28:5–12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan ZX, Li FF, Qu YY, Liu J, Liu GR, Zhou J, Zhu YL and Liu SL: Identification of a known mutation in Notch 3 in familiar CADASIL in China. PLoS One. 7:e365902012. View Article : Google Scholar : PubMed/NCBI | |
Posada-Duque RA, Barreto GE and Cardona-Gomez GP: Protection after stroke: Cellular effectors of neurovascular unit integrity. Front Cell Neurosci. 8:2312014. View Article : Google Scholar : PubMed/NCBI | |
Cotena S, Piazza O and Tufano R: The use of erythtropoietin in cerebral diseases. Panminerva Med. 50:185–192. 2008.PubMed/NCBI | |
Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y and Deng ZF: miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 370:45–51. 2012. View Article : Google Scholar : PubMed/NCBI | |
Corada M, Morini MF and Dejana E: Signaling pathways in the specifcation of arteries and veins. Arterioscler Thromb Vasc Biol. 34:2372–2377. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grieskamp T, Rudat C, Lüdtke TH, Norden J and Kispert A: Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 108:813–823. 2011. View Article : Google Scholar : PubMed/NCBI | |
del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Pérez-Pomares JM and de la Pompa JL: Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 108:824–836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Proweller A, Wright AC, Horng D, Cheng L, Lu MM, Lepore JJ, Pear WS and Parmacek MS: Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc Natl Acad Sci USA. 104:16275–16280. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koga J, Nakano T, Dahlman JE, Figueiredo JL, Zhang H, Decano J, Khan OF, Niida T, Iwata H, Aster JC, et al: Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development: Implications for the Treatment of Vein Graft Failure. Arterioscler Thromb Vasc Biol. 35:2343–2353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, Moens CB, Parsons MJ and Lawson ND: Distinct Notch signaling outputs pattern the developing arterial system. Development. 141:1544–1552. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zacharek A, Chen J, Cui X, Yang Y and Chopp M: Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 40:254–260. 2009. View Article : Google Scholar | |
Chen J, Cui X, Zacharek A, Ding GL, Shehadah A, Jiang Q, Lu M and Chopp M: Niaspan treatment increases tumor necrosis factor-alpha-converting enzyme and promotes arteriogenesis after stroke. J Cereb Blood Flow Metab. 29:911–920. 2009. View Article : Google Scholar : PubMed/NCBI | |
Di Napoli M and Shah IM: Neuroinflammation and cerebrovascular disease in old age: A translational medicine perspective. J Aging Res. 2011:8574842011. View Article : Google Scholar : PubMed/NCBI | |
Felsky D, De Jager PL, Schneider JA, Arfanakis K, Fleischman DA, Arvanitakis Z, Honer WG, Pouget JG, Mizrahi R, Pollock BG, et al: Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. J Cereb Blood Flow Metab. 36:819–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cacabelos R, Torrellas C, Fernández-Novoa L and Aliev G: Neuroimmune Crosstalk in CNS Disorders: The Histamine Connection. Curr Pharm Des. 22:819–848. 2016. View Article : Google Scholar | |
Silva J, Polesskaya O, Knight W, Zheng JT, Granger M, Lopez T, Ontiveros F, Feng C, Yan C, Kasischke KA and Dewhurst S: Transient hypercapnia reveals an underlying cerebrovascular pathology in a murine model for HIV-1 associated neuroinflammation: Role of NO-cGMP signaling and normalization by inhibition of cyclic nucleotide phosphodiesterase-5. J Neuroinflammation. 9:2532012. View Article : Google Scholar : PubMed/NCBI | |
Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Atheroscler Rep. 5:317–323. 2003. View Article : Google Scholar : PubMed/NCBI | |
Heo R, Park JS, Jang HJ, Kim SH, Shin JM, Suh YD, Jeong JH, Jo DG and Park JH: Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J Control Release. 192:295–300. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH and Faber JE: Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metal-loprotease family members 10 and 17. Circ Res. 111:1539–1550. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brifault C, Gras M, Liot D, May V, Vaudry D and Wurtz O: Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke. 46:520–528. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holden JA, Attard TJ, Laughton KM, Mansell A, O'Brien-Simpson NM and Reynolds EC: Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 82:4190–4203. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, He K, Wang F, Li X and Liu D: Notch-1 signaling regulates astrocytic proliferation and activation after hypoxia exposure. Neurosci Lett. 603:12–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep. 4:420–426. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Chi F, Guo T, Punj V, Lee WN, French SW and Tsukamoto H: NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest. 125:1579–1590. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pei H, Song X, Peng C, Tan Y, Li Y, Li X, Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med. 82:114–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qin WD, Zhang F, Qin XJ, Wang J, Meng X, Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH and Osborne BA: Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 38:174–183. 2008. View Article : Google Scholar | |
Cao Q, Kaur C, Wu CY, Lu J and Ling EA: Nuclear factor-kappa β regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience. 192:140–154. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, Wu C and Ling EA: Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 16:842015. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar | |
Qiu Y, Du B, Xie F, Cai W, Liu Y, Li Y, Feng L and Qiu L: Vaccarin attenuates high glucose-induced human EA•hy926 endothelial cell injury through inhibition of Notch signaling. Mol Med Rep. 13:2143–2150. 2016.PubMed/NCBI | |
Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mäe MA, Jin S, Betsholtz C and Lendahl U: Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 35:409–420. 2015. View Article : Google Scholar | |
Yu LM, Chen DX, Zhou QX, Fang N and Liu ZL: Effects of histamine on immunophenotype and notch signaling in human HL-60 leukemia cells. Exp Biol Med (Maywood). 231:1633–1637. 2006. | |
Boulos N, Helle F, Dussaule JC, Placier S, Milliez P, Djudjaj S, Guerrot D, Joutel A, Ronco P, Boffa JJ and Chatziantoniou C: Notch3 is essential for regulation of the renal vascular tone. Hypertension. 57:1176–1182. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fischer AJ, Zelinka C, Gallina D, Scott MA and Todd L: Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 62:1608–1628. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shipp LE, Hill RZ, Moy GW, Gokirmak T and Hamdoun A: ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development. 142:3537–3548. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bartosh TJ, Ylostalo JH, Bazhanov N, Kuhlman J and Prockop DJ: Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells. 31:2443–2456. 2013. View Article : Google Scholar : PubMed/NCBI | |
Clement N, Gueguen M, Glorian M, Blaise R, Andréani M, Brou C, Bausero P and Limon I: Notch3 and IL-1beta exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-kappaB drives crosstalk. J Cell Sci. 120:3352–3361. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ali M, Heyob K and Rogers LK: DHA suppresses primary macrophage inflammatory responses via Notch 1/Jagged 1 signaling. Sci Rep. 6:222762016. View Article : Google Scholar | |
Yin J, Li H, Feng C and Zuo Z: Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets. 13:718–732. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Fan X, Zhu J, Xu G, Li Y and Liu X: Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation. Neurosci Lett. 559:1–6. 2014. View Article : Google Scholar | |
Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N and Comi AM: Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 41(Suppl 10): S64–S71. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lipsey CC, Harbuzariu A, Daley-Brown D and Gonzalez-Perez RR: Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol. 6:43–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grill M, Syme TE, Nocon AL, Lu AZ, Hancock D, Rose-John S and Campbell IL: Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia. 63:1738–1752. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, Cross A, Chiverton N, Zheng Z, Shapiro IM, et al: Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: Implications in intervertebral disc degeneration. J Biol Chem. 288:16761–16774. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keuylian Z, de Baaij JH, Gueguen M, Glorian M, Rouxel C, Merlet E, Lipskaia L, Blaise R, Mateo V and Limon I: The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem. 287:24978–24989. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mirandola L, Apicella L, Colombo M, Yu Y, Berta DG, Platonova N, Lazzari E, Lancellotti M, Bulfamante G, Cobos E, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 27:1558–1566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI | |
Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kumari B, Jain P, Das S, Ghosal S, Hazra B, Trivedi AC, Basu A, Chakrabarti J, Vrati S and Banerjee A: Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep. 6:202632016. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Cao Q, Wu C, Kaur C, Hao A and Ling EA: Notch signaling in the central nervous system with special reference to its expression in microglia. CNS Neurol Disord Drug Targets. 12:807–814. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L and De Strooper B: A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell. 30:423–436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E and Heuschling P: Notch signaling modulates the activation of microglial cells. Glia. 55:1519–1530. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morgan SC, Taylor DL and Pocock JM: Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem. 90:89–101. 2004. View Article : Google Scholar : PubMed/NCBI | |
Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, et al: Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 12:621–623. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 278:84–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J and Ling EA: Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro. PLoS One. 8:e784392013. View Article : Google Scholar | |
Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST and Ling EA: Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia. 56:1224–1237. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morga E, Mouad-Amazzal L, Felten P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L and Heuschling P: Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOCS pathways. Glia. 57:1741–1753. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, Merkely B and Nagy Z: Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 33:1–14. 2015. | |
Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones DP: Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Res. 9:169–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
Darley-Usmar V and Halliwell B: Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 13:649–662. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wu JQ, Kosten TR and Zhang XY: Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 46:200–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Catarino MD, Alves-Silva JM, Pereira OR and Cardoso SM: Antioxidant capacities of favones and benefts in oxidative-stress related diseases. Curr Top Med Chem. 15:105–119. 2015. View Article : Google Scholar | |
Lee JC and Won MH: Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol. 47:149–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Valko M, Morris H and Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem. 12:1161–1208. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu D and Yotnda P: Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp. pii: 3357. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Tan DX, Manchester LC and Qi W: Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys. 34:237–256. 2001. View Article : Google Scholar | |
Reiter RJ, Acuña-Castroviejo D, Tan DX and Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 939:200–215. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hemnani T and Parihar MS: Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol. 42:440–452. 1998. | |
Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A and Feuerhake W: Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 12:698–714. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oprea E, Berteanu M, Cintezã D and Manolescu BN: The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl Physiol Nutr Metab. 38:613–620. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Zhang Y, Shi X, Wei T and Lou J: Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35). Neural Regen Res. 9:1297–1302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Braidy N, Jayasena T, Poljak A and Sachdev PS: Sirtuins in cognitive ageing and Alzheimer's disease. Curr Opin Psychiatry. 25:226–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakane H, Kamouchi M, Hata J, Ibayashi S, Kusuda K, Omae T, Nagao T, Ago T and Kitazono T; EMINENT Study Investigators: Effects of hydrochlorothiazide on oxidative stress and pulse pressure in hypertensive patients with chronic stroke: The EMINENT study. Intern Med. 54:573–577. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Koibuchi N, Maeda M, et al: Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2:e0003752013. View Article : Google Scholar : PubMed/NCBI | |
Das UN: Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses. 39:90–94. 1992. View Article : Google Scholar : PubMed/NCBI | |
Manzanero S, Santro T and Arumugam TV: Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int. 62:712–718. 2013. View Article : Google Scholar | |
Cojocaru IM, Cojocaru M, Sapira V and Ionescu A: Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med. 51:97–106. 2013.PubMed/NCBI | |
Icme F, Erel Ö, Avci A, Satar S, Gülen M and Acehan S: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci. 45:947–953. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simão AN, Lehmann MF, Alferi DF, Meloni MZ, Flauzino T, Scavuzzi BM, de Oliveira SR, Lozovoy MA, Dichi I and Reiche EM: Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis. 30:1409–1416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsai NW, Chang YT, Huang CR, Lin YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Chen SF, Huang CC, et al: Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. Biomed Res Int. 2014:2568792014. View Article : Google Scholar : PubMed/NCBI | |
Pantcheva P, Elias M, Duncan K, Borlongan CV, Tajiri N and Kaneko Y: The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regen Res. 9:1430–1433. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nabavi SF, Dean OM, Turner A, Sureda A, Daglia M and Nabavi SM: Oxidative stress and post-stroke depression: Possible therapeutic role of polyphenols? Curr Med Chem. 22:343–351. 2015. View Article : Google Scholar | |
Gonullu H, Aslan M, Karadas S, Kati C, Duran L, Milanlioglu A, Aydin MN and Demir H: Serum prolidase enzyme activity and oxidative stress levels in patients with acute hemorrhagic stroke. Scand J Clin Lab Invest. 74:199–205. 2014. View Article : Google Scholar : PubMed/NCBI | |
El Kossi MM and Zakhary MM: Oxidative stress in the context of acute cerebrovascular stroke. Stroke. 31:1889–1892. 2000. View Article : Google Scholar : PubMed/NCBI | |
Milanlioglu A, Aslan M, Ozkol H, Çilingir V, Nuri Aydin M and Karadas S: Serum antioxidant enzymes activities and oxidative stress levels in patients with acute ischemic stroke: Influence on neurological status and outcome. Wien Klin Wochenschr. 128:169–174. 2016. View Article : Google Scholar | |
Newton DF, Naiberg MR and Goldstein BI: Oxidative stress and cognition amongst adults without dementia or stroke: Implications for mechanistic and therapeutic research in psychiatric disorders. Psychiatry Res. 227:127–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T, Nakatsuji M, Shahani N, Itakura M, Ono Y, Azuma YT, et al: Nuclear-translocated Glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during Oxidative/Nitrosative stress in stroke. J Biol Chem. 290:14493–14503. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kotur-Stevuljevic J, Bogavac-Stanojevic N, Jelic-Ivanovic Z, Stefanovic A, Gojkovic T, Joksic J, Sopic M, Gulan B, Janac J and Milosevic S: Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis. 241:192–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Shen F, He Y, Degos V, Camus M, Maze M, Young WL and Su H: Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One. 9:e1057112014. View Article : Google Scholar | |
Lagowska-Lenard M, Bielewicz J, Raszewski G, Stelmasiak Z and Bartosik-Psujek H: Oxidative stress in cerebral stroke. Pol Merkur Lekarski. 25:205–208. 2008.In Polish. | |
Takemori K, Murakami T, Kometani T and Ito H: Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res. 90:169–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hung LM, Huang JP, Liao JM, Yang MH, Li DE, Day YJ and Huang SS: Insulin renders diabetic rats resistant to acute ischemic stroke by arresting nitric oxide reaction with superoxide to form peroxynitrite. J Biomed Sci. 21:922014. View Article : Google Scholar : PubMed/NCBI | |
Fabian RH and Kent TA: Hyperglycemia accentuates persistent 'functional uncoupling' of cerebral microvascular nitric oxide and superoxide following focal ischemia/reperfusion in rats. Transl Stroke Res. 3:482–490. 2012. View Article : Google Scholar | |
Fabian RH, Perez-Polo JR and Kent TA: Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia. Am J Physiol Heart Circ Physiol. 295:H1809–H1814. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gümüştaş K, Meta Güzeyli FM, Atükeren P, Sanus GZ, Kemerdere R, Tanriverdi T and Kaynar MY: The effects of vitamin E on lipid peroxidation, nitric oxide production and superoxide dismutase expression in hyperglycemic rats with cerebral ischemia-reperfusion injury. Turk Neurosurg. 17:78–82. 2007. | |
Forman LJ, Liu P, Nagele RG, Yin K and Wong PY: Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res. 23:141–148. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E and Dominiczak AF: Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens. 20:281–286. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baumeister P, Huebner T, Reiter M, Schwenk-Zieger S and Harréus U: Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res. 29:4571–4574. 2009.PubMed/NCBI | |
Mikhaĭlov VF, Mazurik VK and Burlakova EB: Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: Contribution of radiosensitivity and genome instability. Radiats Biol Radioecol. 43:5–18. 2003.In Russian. | |
Fischer-Nielsen A, Corcoran GB, Poulsen HE, Kamendulis LM and Loft S: Menadione-induced DNA fragmentation without 8-oxo-2′-deoxyguanosine formation in isolated rat hepatocytes. Biochem Pharmacol. 49:1469–1474. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, Guo X, Han H, Qin S and Chui D: Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 445:352–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tóth AE, Walter FR, Bocsik A, Sántha P, Veszelka S, Nagy L, Puskás LG, Couraud PO, Takata F, Dohgu S, et al: Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells. PLoS One. 9:e1001522014. View Article : Google Scholar : PubMed/NCBI | |
Elmorsy E, Elzalabany LM, Elsheikha HM and Smith PA: Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res. 1583:255–268. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sathanoori R, Swärd K, Olde B and Erlinge D: The ATP Receptors P2X7 and P2X4 modulate high glucose and Palmitate-Induced inflammatory responses in endothelial cells. PLoS One. 10:e01251112015. View Article : Google Scholar : PubMed/NCBI | |
Okada R, Wu Z, Zhu A, Ni J, Zhang J, Yoshimine Y, Peters C, Saftig P and Nakanishi H: Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci. 64:51–60. 2015. View Article : Google Scholar | |
Abdul-Muneer PM, Chandra N and Haorah J: Interactions of oxidative stress and neurovascular infammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 51:966–979. 2015. View Article : Google Scholar | |
Ste-Marie L, Hazell AS, Bémeur C, Butterworth R and Montgomery J: Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia. Brain Res. 918:10–19. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kumura E, Yoshimine T, Kubo S, Tanaka S, Hayakawa T, Shiga T and Kosaka H: Effects of superoxide dismutase on nitric oxide production during reperfusion after focal cerebral ischemia is rats. Neurosci Lett. 200:137–140. 1995. View Article : Google Scholar : PubMed/NCBI | |
Al-Maghrebi M and Renno WM: Genistein alleviates testicular ischemia and reperfusion injury-induced sper-matogenic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways. J Physiol Pharmacol. 67:129–137. 2016.PubMed/NCBI | |
Xie H, Sun J, Chen Y, Zong M, Li S and Wang Y: EGCG attenuates uric Acid-Induced inflammatory and oxidative stress responses by medicating the NOTCH pathway. Oxid Med Cell Longev. 2015:2148362015. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Cai W, Liu Y, Li Y, Du B, Feng L and Qiu L: Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med. 35:135–142. 2015. | |
Yang Y, Duan W, Liang Z, Yi W, Yan J, Wang N, Li Y, Chen W, Yu S, Jin Z and Yi D: Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal. 25:615–629. 2013. View Article : Google Scholar | |
Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI and Nefedova Y: Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther. 9:3200–3209. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Cui H, Li Z, Wang R and Zhou C: Normobaric oxygen for cerebral ischemic injury. Neural Regen Res. 8:2885–2894. 2013. | |
Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, Fei J and Abdukerim K: Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med. 15:2852015. View Article : Google Scholar : PubMed/NCBI | |
Finsterer J: Neuromuscular implications in CADASIL. Cerebrovasc Dis. 24:401–404. 2007. View Article : Google Scholar : PubMed/NCBI | |
Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, et al: Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophys Acta. 1845:221–231. 2014.PubMed/NCBI | |
Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI | |
Simón R, Aparicio R, Housden BE, Bray S and Busturia A: Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis. 19:1430–1443. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng WX, Cao XL, Wang F, Wang J, Ying TZ, Xiao W, Zhang Y, Xing H, Dong W, Xu SQ, et al: Baicalin inhibiting cerebral ischemia/hypoxia-induced neuronal apoptosis via MRTF-A-mediated transactivity. Eur J Pharmacol. 767:201–210. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V, Barberà-Cremades M, Yagüe J, Ruiz-Ortiz E, Antón J, et al: The NLRP3 inflammasome is released as a particulate danger signal that amplifes the inflammatory response. Nat Immunol. 15:738–748. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang RY and Liu FT: Galectins in cell growth and apoptosis. Cell Mol Life Sci. 60:267–276. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bao JX, Su YT, Cheng YP, Zhang HJ, Xie XP and Chang YM: Vascular sphingolipids in physiological and pathological adaptation. Front Biosci (Landmark Ed). 21:1168–1186. 2016. View Article : Google Scholar | |
Kagiya G, Ogawa R, Tabuchi Y, Feril LB Jr, Nozaki T, Fukuda S, Yamamoto K and Kondo T: Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem. 13:388–396. 2006. View Article : Google Scholar | |
Santiago B, Galindo M, Palao G and Pablos JL: Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and cycloheximide. J Immunol. 172:560–566. 2004. View Article : Google Scholar | |
Wang L, Song G, Liu M, Chen B, Chen Y, Shen Y, Zhu J and Zhou X: MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway. Int J Mol Med. 37:47–55. 2016. | |
Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H and Nikbakht F: Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci. 65:435–443. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS and Tian YF: MicroRNA-25 negatively regulates cerebral Ischemia/Reperfusion Injury-Induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci. 58:507–516. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xue R, Wu G, Wei X, Lv J, Fu R, Lei X, Zhang Z, Li W, He J, Zhao H, et al: Tea polyphenols may attenuate the neurocognitive impairment caused by global cerebral ischemia/reperfusion injury via anti-apoptosis. Nutr Neurosci. 19:63–69. 2016. View Article : Google Scholar | |
Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm. 2015:1201982015. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK and Tang N: Yifei Xuanfei Jiangzhuo formula, a Chinese herbal decoction, improves memory impairment through inhibiting apoptosis and enhancing PKA/CREB signal transduction in rats with cerebral ischemia/reperfusion. Mol Med Rep. 12:4273–4283. 2015.PubMed/NCBI | |
Saad MA, Abdelsalam RM, Kenawy SA and Attia AS: Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia-reperfusion in rats. Chem Biol Interact. 232:21–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Jin W, Zhao H, Xiao Y, Jia Y, Yin Y, Jiang X, Xu J, Meng N and Lv P: Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res. 291:399–406. 2015. View Article : Google Scholar : PubMed/NCBI | |
Garrigue P, Giacomino L, Bucci C, Muzio V, Filannino MA, Sabatier F, Dignat-George F, Pisano P and Guillet B: Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats. Int J Stroke. 11:117–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cao G, Zhou H, Jiang N, Han Y, Hu Y, Zhang Y, Qi J, Kou J and Yu B: YiQiFuMai powder injection ameliorates cerebral ischemia by inhibiting endoplasmic reticulum Stress-Mediated neuronal apoptosis. Oxid Med Cell Longev. 2016:54932792016. View Article : Google Scholar : PubMed/NCBI | |
Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J and Bai B: Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neural Regen Res. 10:766–771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saad MA, Abdel Salam RM, Kenawy SA and Attia AS: Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep. 67:115–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Li L, Tan X, Liu B, Zhang Y and Li C: miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 134:173–181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chopp M and Li Y: Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl. 66:21–26. 1996.PubMed/NCBI | |
Wu X, Li L, Zhang L, Wu J, Zhou Y, Zhou Y, Zhao Y and Zhao J: Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res. 1599:20–31. 2015. View Article : Google Scholar | |
Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM and Chung DH: Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2:297–306. 2009. View Article : Google Scholar | |
Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ and Powell MB: Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest. 118:3660–3670. 2008. View Article : Google Scholar : PubMed/NCBI | |
Petit A, Bihel F, Alvès da Costa C, Pourquié O, Checler F and Kraus JL: New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat Cell Biol. 3:507–511. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T, Tanaka T, Iwatsubo T, Kudo T, Takeda M and Haass C: Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J. 21:5408–5416. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ikeuchi T and Sisodia SS: The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent 'gamma-secretase' cleavage. J Biol Chem. 278:7751–7754. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Gong Y, Wang Q, Wang Y and Zhang X: The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell Signal. 27:1087–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu XD, Zhang LY, Zhu TC, Zhang RF, Wang SL and Bao Y: Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways. Int J Clin Exp Pathol. 8:4525–4534. 2015.PubMed/NCBI | |
Wang XM, Yao M, Liu SX, Hao J, Liu QJ and Gao F: Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis. Am J Physiol Renal Physiol. 306:F205–F213. 2014. View Article : Google Scholar | |
Gao F, Yao M, Shi Y, Hao J, Ren Y, Liu Q, Wang X and Duan H: Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways. J Cell Biochem. 114:1029–1038. 2013. View Article : Google Scholar | |
Yang Y, Li X, Zhang L, Liu L, Jing G and Cai H: Ginsenoside Rg1 suppressed infammation and neuron apoptosis by activating PPAR γ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol. 8:2484–2494. 2015. | |
Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, Wang Q, Chen G, Xu H and Xu L: Electroacupuncture pretreatment attenuates cerebral ischemic injury via Notch Pathway-Mediated Up-Regulation of hypoxia inducible Factor-1α in Rats. Cell Mol Neurobiol. 35:1093–1103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG and Arumugam TV: Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res. 1586:193–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Su Z, Liu Z, Wang N and Wang Z: Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 306:100–114. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma M, Wang X, Ding X, Teng J, Shao F and Zhang J: Numb/Notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 38:254–261. 2013. View Article : Google Scholar | |
Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, Zhang H, Pang M, Yu J and Liu J: Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett. 613:30–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arumugam TV, Cheng YL, Choi Y, Choi YH, Yang S, Yun YK, Park JS, Yang DK, Thundyil J, Gelderblom M, et al: Evidence that gamma-secretase-mediated Notch signaling induces neuronal cell death via the nuclear factor-kappaB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol. 80:23–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, Li YI, Gwon AR, Woo HN, Jang J, et al: Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 23:402–412. 2013. View Article : Google Scholar | |
Baik SH, Fane M, Park JH, Cheng YL, Yang-Wei Fann D, Yun UJ, Choi Y, Park JS, Chai BH, Back SH, et al: Pin1 promotes neuronal death in stroke by stabilizing Notch intracellular domain. Ann Neurol. 77:504–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan A, Gray F, Bousser MG, Baudrimont M and Chabriat H: Cortical neuronal apoptosis in CADASIL. Stroke. 37:2690–2695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalimo H, Ruchoux MM, Viitanen M and Kalaria RN: CADASIL: A common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 12:371–384. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L and Zhao LR: Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis. 73:189–203. 2015. View Article : Google Scholar | |
Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y and Guo Y: Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling. PLoS One. 7:e428282012. View Article : Google Scholar : PubMed/NCBI | |
Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL and Xiong L: The neuroprotective effects of isofurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: The role of the Notch signaling pathway. Neuromolecular Med. 16:191–204. 2014. View Article : Google Scholar | |
Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, Wang S, Zhang X and Xiong L: Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevo-flurane preconditioning in mice. Anesthesiology. 117:996–1005. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis. 41:867–874. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Klein R, Tian X, Cheng HT, Kopan R and Shen J: Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 269:81–94. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, et al: MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 6:e245842011. View Article : Google Scholar : PubMed/NCBI | |
Sionov RV, Kfr-Erenfeld S, Spokoini R and Yefenof E: A role for bcl-2 in notch1-dependent transcription in thymic lymphoma cells. Adv Hematol. 2012:4352412012. View Article : Google Scholar : PubMed/NCBI | |
Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemo-sensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett. 3:879–884. 2012.PubMed/NCBI | |
Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. APMIS. 120:441–450. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport. 9:1481–1486. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38 pathway. Oncol Rep. 35:2795–2800. 2016.PubMed/NCBI | |
Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, et al: Notch activation of Ca(2+) signaling in the development of hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol. 53:355–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rothschild SC, Lahvic J, Francescatto L, McLeod JJ, Burgess SM and Tombes RM: CaMK-II activation is essential for zebrafsh inner ear development and acts through Delta-Notch signaling. Dev Biol. 381:179–188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim SK, Park HJ, Hong HS, Baik EJ, Jung MW and Mook-Jung I: ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J. 20:157–159. 2006. | |
Servín-González LS, Granados-López AJ and López JA: Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci. 16:12773–12790. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aguirre A, Rubio ME and Gallo V: Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 467:323–327. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nagaraj R and Banerjee U: Regulation of Notch and Wingless signalling by phyllopod, a transcriptional target of the EGFR pathway. EMBO J. 28:337–346. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Kondra K, Sturek M and Sellke FW: Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. J Thorac Cardiovasc Surg. 148:1048–1055. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Ye J, Dai J, Li L, Chen F, Ma D and Ji C: Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res. 33:678–685. 2009. View Article : Google Scholar | |
Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ and Susztak K: Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 64:4099–4111. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bheeshmachar G, Purushotaman D, Sade H, Gunasekharan V, Rangarajan A and Sarin A: Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. J Immunol. 177:5041–5050. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sholler GS, Currier EA, Dutta A, Slavik MA, Illenye SA, Mendonca MC, Dragon J, Roberts SS and Bond JP: PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J Cancer Ther Res. 2:212013. View Article : Google Scholar | |
Yu HC, Bai L, Yue SQ, Wang DS, Wang L, Han H and Dou KF: Notch signal protects non-parenchymal cells from ischemia/reperfusion injury in vitro by repressing ROS. Ann Hepatol. 12:815–821. 2013.PubMed/NCBI | |
Naik S, MacFarlane M and Sarin A: Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells. J Cell Biochem. 116:1371–1380. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Qi R, Li N, Wang Z, An H, Zhang Q, Yu Y and Cao X: Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 284:16183–16190. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chung AS, Lee J and Ferrara N: Targeting the tumour vascu-lature: Insights from physiological angiogenesis. Nat Rev Cancer. 10:505–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P, Moons L, Dewerchin M, Mackman N, Luther T, Breier G, Ploplis V, Müller M, Nagy A, Plow E, et al: Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor and the plasminogen system. Ann N Y Acad Sci. 811:191–206. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lymboussaki A, Olofsson B, Eriksson U and Alitalo K: Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res. 85:992–999. 1999. View Article : Google Scholar : PubMed/NCBI | |
McColl BK, Stacker SA and Achen MG: Molecular regulation of the VEGF family-inducers of angiogenesis and lymphangiogenesis. APMIS. 112:463–480. 2004. View Article : Google Scholar : PubMed/NCBI | |
Przybylski M: A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 18:516–519. 2009. View Article : Google Scholar | |
Li JL and Harris AL: Crosstalk of VEGF and Notch pathways in tumour angiogenesis: Therapeutic implications. Front Biosci (Landmark Ed). 14:3094–3110. 2009. View Article : Google Scholar | |
Dimova I, Popivanov G and Djonov V: Angiogenesis in cancer-general pathways and their therapeutic implications. J BUON. 19:15–21. 2014.PubMed/NCBI | |
Phng LK and Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 16:196–208. 2009. View Article : Google Scholar : PubMed/NCBI | |
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boas SE and Merks RM: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC Syst Biol. 9:862015. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Pascual CM, Zimmermann RC, Ferrero H, Shawber CJ, Kitajewski J, Simón C, Pellicer A and Gomez R: Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil Steril. 100:1768–1776.e1. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G and Helewski K: The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn). 17:234–237. 2013. | |
Fukuhara S, Sako K, Noda K, Zhang J, Minami M and Mochizuki N: Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol. 25:387–396. 2010.PubMed/NCBI | |
Cao Y, Cao R and Hedlund EM: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 86:785–789. 2008. View Article : Google Scholar | |
van Meeteren LA, Goumans MJ and ten Dijke P: TGF-β receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol. 12:2108–2120. 2011. View Article : Google Scholar : PubMed/NCBI | |
Orlova VV, Liu Z, Goumans MJ and ten Dijke P: Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol. 26:1219–1230. 2011.PubMed/NCBI | |
Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y and Ogihara T: Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: Preclinical study for treatment of peripheral arterial disease. Gene Ther. 8:181–189. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z and Li S: HIF-12α and HIF-22α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PLoS One. 9:e889132014. View Article : Google Scholar | |
Hayashi H and Kume T: Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One. 3:e24012008. View Article : Google Scholar : PubMed/NCBI | |
Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, Yoshidome H, Kato A, Nukui Y and Miyazaki M: Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 37:1105–1113. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG and Fraser HM: Angiogenesis in the human corpus luteum: Localization and changes in angiopoietins, tie-2 and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 85:4302–4309. 2000.PubMed/NCBI | |
Weinmaster G: Notch signaling: Direct or what? Curr Opin Genet Dev. 8:436–442. 1998. View Article : Google Scholar : PubMed/NCBI | |
Reizis B and Leder P: Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16:295–300. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K and Ogawa H: Notch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms. J Immunol. 194:4535–4544. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, Felbor U, Sure U, Augustin HG and Fischer A: Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA. 107:12640–12645. 2010. View Article : Google Scholar : PubMed/NCBI | |
You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U and Zhu Y: Loss of CCM3 impairs DLL4-Notch signalling: Implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med. 17:407–418. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patel NS, Li JL, Generali D, Poulsom R, Cranston DW and Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–8697. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rath S, Liebl J, Furst R, Vollmar AM and Zahler S: Regulation of endothelial signaling and migration by v-ATPase. Angiogenesis. 17:587–601. 2014. View Article : Google Scholar | |
Hernandez SL, Banerjee D, Garcia A, Kangsamaksin T, Cheng WY, Anastassiou D, Funahashi Y, Kadenhe-Chiweshe A, Shawber CJ, Kitajewski JK, et al: Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis. Vasc Cell. 5:172013. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Kaluza D and Jakobsson L: VEGF, Notch and TGFβ/BM Ps in regulation of sprouting angiogenesis and vascular patterning. Biochem Soc Trans. 42:1576–1583. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chintala H, Krupska I, Yan L, Lau L, Grant M and Chaqour B: The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development. 142:2364–2374. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kiec-Wilk B, Grzybowska-Galuszka J, Polus A, Pryjma J, Knapp A and Kristiansen K: The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC. J Physiol Pharmacol. 61:217–225. 2010.PubMed/NCBI | |
Cao L, Arany PR, Wang YS and Mooney DJ: Promoting angio-genesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials. 30:4085–4093. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thurston G and Kitajewski J: VEGF and Delta-Notch: Interacting signalling pathways in tumour angiogenesis. Br J Cancer. 99:1204–1209. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G and Hermann DM: Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke. 44:1690–1697. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang JP, Liu HJ and Liu XF: VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg. 23:149–155. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dzietko M, Derugin N, Wendland MF, Vexler ZS and Ferriero DM: Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 4:189–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee HJ, Kim KS, Park IH and Kim SU: Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One. 2:e1562007. View Article : Google Scholar : PubMed/NCBI | |
Esposito E, Hayakawa K, Maki T, Arai K and Lo EH: Effects of postconditioning on neurogenesis and angiogenesis during the recovery phase after focal cerebral ischemia. Stroke. 46:2691–2694. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oh TW, Park KH, Jung HW and Park YK: Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complement Altern Med. 15:1012015. View Article : Google Scholar : PubMed/NCBI | |
Duan S, Shao G, Yu L and Ren C: Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci. 125:625–634. 2015. View Article : Google Scholar | |
Hayward NM, Yanev P, Haapasalo A, Miettinen R, Hiltunen M, Grohn O and Jolkkonen J: Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab. 31:1119–1132. 2011. View Article : Google Scholar : | |
Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y and Deng Z: Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: Involvement of notch signalling. Cell Biol Int. 36:997–1004. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dao M, Tate CC, McGrogan M and Case CC: Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med. 11:812013. View Article : Google Scholar | |
Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vähakängas E, Korpisalo P, et al: Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation. 119:845–856. 2009. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem. 102:840–847. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI | |
Buschmann I and Schaper W: Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci. 14:121–125. 1999. | |
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20:3427–3436. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gunaratne A, Chan E, El-Chabib TH, Carter D and Di Guglielmo GM: aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci. 128:487–498. 2015. View Article : Google Scholar | |
Wang Y, Pan L, Moens CB and Appel B: Notch3 establishes brain vascular integrity by regulating pericyte number. Development. 141:307–317. 2014. View Article : Google Scholar : | |
Blasi F, Wei Y, Balkaya M, Tikka S, Mandeville JB, Waeber C, Ayata C and Moskowitz MA: Recognition memory impairments after subcortical white matter stroke in mice. Stroke. 45:1468–1473. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Duan M, Hu G and Buch S: Platelet-derived growth factor B chain is a novel target gene of cocaine-mediated Notch1 signaling: Implications for HIV-associated neurological disorders. J Neurosci. 31:12449–12454. 2011. View Article : Google Scholar : PubMed/NCBI | |
Manda VK, Mittapalli RK, Geldenhuys WJ and Lockman PR: Chronic exposure to nicotine and saquinavir decreases endothelial Notch-4 expression and disrupts blood-brain barrier integrity. J Neurochem. 115:515–525. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Pérez-del-Pulgar S, Carpenter PM and Hughes CC: Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvasc Res. 66:102–112. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang J, Zhao C, Ren K, Xia Z, Yu H and Jiang K: Acute Blockage of Notch signaling by DAPT induces neuroprotection and Neurogenesis in the Neonatal rat brain after stroke. Transl Stroke Res. 7:132–140. 2016. View Article : Google Scholar | |
Marumo T, Takagi Y, Muraki K, Hashimoto N, Miyamoto S and Tanigaki K: Notch signaling regulates nucleocytoplasmic Olig2 translocation in reactive astrocytes differentiation after ischemic stroke. Neurosci Res. 75:204–209. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shimada IS, Borders A, Aronshtam A and Spees JL: Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke. 42:3231–3237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G and Kitajewski J: Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res. 60:91–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xiao MJ, Han Z, Shao B and Jin K: Notch signaling and neuro-genesis in normal and stroke brain. Int J Physiol Pathophysiol Pharmacol. 1:192–202. 2009. | |
Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, et al: Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Liu LY, Ma YY and Zhang W: Notch signaling-mediated neural lineage selection facilitates intrastriatal transplantation therapy for ischemic stroke by promoting endogenous regeneration in the hippocampus. Cell Transplant. 23:221–238. 2014. View Article : Google Scholar | |
Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, et al: Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 18:1501–1514. 2009. View Article : Google Scholar : PubMed/NCBI |