1
|
Noseworthy JH, Lucchinetti C, Rodriguez M
and Weinshenker BG: Multiple sclerosis. N Engl J Med. 343:938–952.
2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dyment DA, Ebers GC and Sadovnick AD:
Genetics of multiple sclerosis. Lancet Neurol. 3:104–110. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bakshi R: The new era of multiple
sclerosis therapeutics. Neurotherapeutics. 10:12013. View Article : Google Scholar :
|
4
|
Castro-Borrero W, Graves D, Frohman TC,
Flores AB, Hardeman P, Logan D, Orchard M, Greenberg B and Frohman
EM: Current and emerging therapies in multiple sclerosis: A
systematic review. Ther Adv Neurol Disord. 5:205–220. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
McGraw CA and Lublin FD: Interferon beta
and glatiramer acetate therapy. Neurotherapeutics. 10:2–18. 2013.
View Article : Google Scholar :
|
6
|
Happe LE: Choosing the best treatment for
multiple sclerosis: Comparative effectiveness, safety and other
factors involved in disease-modifying therapy choice. Am J Manag
Care. 19(Suppl 17): S332–S342. 2013.
|
7
|
Baranzini SE, Wang J, Gibson RA, Galwey N,
Naegelin Y, Barkhof F, Radue EW, Lindberg RL, Uitdehaag BM, Johnson
MR, et al: Genome-wide association analysis of susceptibility and
clinical phenotype in multiple sclerosis. Hum Mol Genet.
18:767–778. 2009. View Article : Google Scholar
|
8
|
Comabella M, Craig DW, Camiña-Tato M,
Morcillo C, Lopez C, Navarro A, Rio J; BiomarkerMS Study Group;
Montalban X and Martin R: Identification of a novel risk locus for
multiple sclerosis at 13q31.3 by a pooled genome-wide scan of
500,000 single nucleotide polymorphisms. PLoS One. 3:e34902008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
International Multiple Sclerosis Genetics
Consortium; Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De
Jager PL, de Bakker PI, Gabriel SB, Mirel DB, et al: Risk alleles
for multiple sclerosis identified by a genomewide study. N Engl J
Med. 357:851–862. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jakkula E, Leppä V, Sulonen AM, Varilo T,
Kallio S, Kemppinen A, Purcell S, Koivisto K, Tienari P, Sumelahti
ML, et al: Genome-wide association study in a high-risk isolate for
multiple sclerosis reveals associated variants in STAT3 gene. Am J
Human Genet. 86:285–291. 2010. View Article : Google Scholar
|
11
|
Patsopoulos NA; Bayer Pharma MS Genetics
Working Group; Steering Committees of Studies Evaluating IFNβ-1b
and a CCR1-Antagonist; ANZgene Consortium; GeneMSA; International
Multiple Sclerosis Genetics Consortium; Esposito F, Reischl J, Lehr
S, Bauer D, et al: Genome-wide meta-analysis identifies novel
multiple sclerosis susceptibility loci. Annl Neurol. 70:897–912.
2011. View Article : Google Scholar
|
12
|
Kemppinen A, Sawcer S and Compston A:
Genome-wide association studies in multiple sclerosis: Lessons and
future prospects. Brief Funct Genomics. 10:61–70. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
International Multiple Sclerosis Genetics
Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S,
Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L,
Dilthey A, Su Z, et al: Genetic risk and a primary role for
cell-mediated immune mechanisms in multiple sclerosis. Nature.
476:214–219. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Comabella M, Craig DW, Morcillo-Suárez C,
Rio J, Navarro A, Fernandez M, Martin R and Montalban X:
Genome-wide scan of 500,000 single-nucleotide polymorphisms among
responders and nonresponders to interferon beta therapy in multiple
sclerosis. Arch Neurol. 66:972–978. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Barnes GN and Slevin JT: Ionotropic
glutamate receptor biology: Effect on synaptic connectivity and
function in neurological disease. Curr Med Chem. 10:2059–2072.
2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mayer ML and Armstrong N: Structure and
function of glutamate receptor ion channels. Annu Rev Physiol.
66:161–181. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Werner P, Pitt D and Raine CS: Glutamate
excitotoxicity-a mechanism for axonal damage and oligodendrocyte
death in multiple sclerosis? J Neural Transm.
Suppl:2000.375–385
|
18
|
Furuyashiki T, Fujisawa K, Fujita A,
Madaule P, Uchino S, Mishina M, Bito H and Narumiya S: Citron, a
Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses
in the thalamus. J Neurosci. 19:109–118. 1999.
|
19
|
Leyva L, Fernández O, Fedetz M, Blanco E,
Fernández VE, Oliver B, León A, Pinto-Medel MJ, Mayorga C, Guerrero
M, et al: IFNAR1 and IFNAR2 polymorphisms confer susceptibility to
multiple sclerosis but not to interferon-beta treatment response. J
Neuroimmunol. 163:165–171. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y and Samuel CE: Editing of glutamate
receptor subunit B pre-mRNA by splice-site variants of
interferon-inducible double-stranded RNA-specific adenosine
deaminase ADAR1. J Biol Chem. 274:5070–5077. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Al Jumah M, Al Balwi M, Hussein M, Kojan
S, Al Khathaami A, Al Fawaz M, Al Muzaini B, Jawhary A and Al
Abdulkareem I: Association of SNPs rs 6498169 and rs10984447 with
multiple sclerosis in Saudi patients: A model of the usefulness of
familial aggregates in identifying genetic linkage in a
multifactorial disease. Mult Scler. 18:1395–1400. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bohlega S, Inshasi J, Al Tahan AR, Madani
AB, Qahtani H and Rieckmann P: Multiple sclerosis in the Arabian
Gulf countries: A consensus statement. J Neurol. 260:2959–2963.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deleu D, Mir D, Al Tabouki A, Mesraoua R,
Mesraoua B, Akhtar N, Al Hail H, D'souza A, Melikyan G, Imam YZ, et
al: Prevalence, demographics and clinical characteristics of
multiple sclerosis in Qatar. Mult Scler. 19:816–819. 2013.
View Article : Google Scholar
|
24
|
Polman CH, Reingold SC, Banwell B, Clanet
M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M,
Kappos L, et al: Diagnostic criteria for multiple sclerosis: 2010
evisions to the McDonald criteria. Ann Neurol. 69:292–302. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kurtzke JF: Rating neurologic impairment
in multiple sclerosis: An expanded disability status scale (EDSS).
Neurology. 33:1444–1452. 1983. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rio J, Nos C, Tintoré M, Téllez N, Galán
I, Pelayo R, Comabella M and Montalban X: Defining the response to
interferon-beta in relapsing-remitting multiple sclerosis patients.
Ann Neurol. 59:344–352. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Solé X, Guinó E, Valls J, Iniesta R and
Moreno V: SNPStats: A web tool for the analysis of association
studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shi YY and He L: SHEsis, a powerful
software platform for analyses of linkage disequilibrium, haplotype
construction, and genetic association at polymorphism loci. Cell
Res. 15:97–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z,
He L and Shi Y: A partition-ligation-combination-subdivision EM
algorithm for haplotype inference with multiallelic markers: Update
of the SHEsis (http://analysis.bio-x.cn).
Cell Res. 19:519–523. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Marigorta UM, Lao O, Casals F, Calafell F,
Morcillo-Suárez C, Faria R, Bosch E, Serra F, Bertranpetit J,
Dopazo H, et al: Recent human evolution has shaped geographical
differences in susceptibility to disease. BMC Genomics. 12:552011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Khalid R: Contributing factors in multiple
sclerosis and the female sex bias. Immunol Lett. 162:223–232. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Stojković L, Stanković A, Djurić T, Dinčić
E, Alavantić D and Zivković M: The gender-specific association of
CXCL16 A181V gene polymorphism with susceptibility to multiple
sclerosis and its effects on PBMC mRNA, and plasma soluble CXCL16
levels: Preliminary findings. J Neurol. 261:1544–1551. 2014.
View Article : Google Scholar
|
33
|
Mirowska-Guzel D, Mach A, Gromadzka G,
Czlonkowski A and Czlonkowska A: BDNF A196G and C270T gene
polymorphisms and susceptibility to multiple sclerosis in the
Polish population. Gender differences. J Neuroimmunol. 193:170–172.
2008. View Article : Google Scholar
|
34
|
Benešová Y, Vašků A, Stourač P, Hladíková
M, Fiala A and Bednařík J: Association of HLA-DRB1*1501 tagging
rs3135388 gene polymorphism with multiple sclerosis. J
Neuroimmunol. 255:92–96. 2013. View Article : Google Scholar
|
35
|
Shirasawa S, Harada H, Furugaki K, Akamizu
T, Ishikawa N, Ito K, Ito K, Tamai H, Kuma K, Kubota S, et al: SNPs
in the promoter of a B cell-specific antisense transcript,
SAS-ZFAT, determine susceptibility to autoimmune thyroid disease.
Hum Mol Genet. 13:2221–2231. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sakai K, Shirasawa S, Ishikawa N, Ito K,
Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, et
al: Identification of susceptibility loci for autoimmune thyroid
disease to 5q31–q33 and Hashimoto's thyroiditis to 8q23–q24 by
multipoint affected sib-pair linkage analysis in Japanese. Hum Mol
Genet. 10:1379–1386. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Koyanagi M, Nakabayashi K, Fujimoto T, Gu
N, Baba I, Takashima Y, Doi K, Harada H, Kato N, Sasazuki T and
Shirasawa S: ZFAT expression in B and T lymphocytes and
identification of ZFAT-regulated genes. Genomics. 91:451–457. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Fujimoto T, Doi K, Koyanagi M, Tsunoda T,
Takashima Y, Yoshida Y, Sasazuki T and Shirasawa S: ZFAT is an
antiapoptotic molecule and critical for cell survival in MOLT-4
cells. FEBS Lett. 583:568–572. 2009. View Article : Google Scholar : PubMed/NCBI
|