1
|
Sosa AL, Albanese E, Stephan BC, Dewey M,
Acosta D, Ferri CP, Guerra M, Huang Y, Jacob KS, Jiménez-Velázquez
IZ, et al: Prevalence, distribution, and impact of mild cognitive
impairment in Latin America, China and India: A 10/66
population-based study. PLoS Med. 9:e10011702012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ashby-Mitchell K, Jagger C, Fouweather T
and Anstey KJ: Life expectancy with and without cognitive
impairment in seven Latin American and Caribbean countries. PloS
One. 10:e01218672015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Price DL, Tanzi RE, Borchelt DR and
Sisodia SS: Alzheimer's disease: Genetic studies and transgenic
models. Annu Rev Genet. 32:461–493. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Barnes DE and Yaffe K: The projected
effect of risk factor reduction on Alzheimer's disease prevalence.
Lancet Neurol. 10:819–828. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang Y and Mucke L: Alzheimer mechanisms
and therapeutic strategies. Cell. 148:1204–1222. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gregory RI and Shiekhattar R: MicroRNA
biogenesis and cancer. Cancer Res. 65:3509–3512. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tan JR, Tan KS, Koo YX, Yong FL, Wang CW,
Armugam A and Jeyaseelan K: Blood microRNAs in low or no risk
ischemic stroke patients. Int J Mol Sci. 14:2072–2084. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Balasubramanyam M, Aravind S,
Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H and Mohan V:
Impaired miR-146a expression links subclinical inflammation and
insulin resistance in Type 2 diabetes. Mol Cell Biochem.
351:197–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Minones-Moyano E, Porta S, Escaramis G,
Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I,
Estivill X and Martí E: MicroRNA profiling of parkinson's disease
brains identifies early downregulation of miR-34b/c which modulate
mitochondrial function. Hum Mol Genet. 20:3067–3078. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Argyropoulos C, Wang K, McClarty S, Huang
D, Bernardo J, Ellis D, Orchard T, Galas D and Johnson J: Urinary
microRNA profiling in the nephropathy of type 1 diabetes. PLoS One.
8:e546622013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Salas-Pérez F, Codner E, Valencia E,
Pizarro C, Carrasco E and Pérez-Bravo F: MicroRNAs miR-21a and
miR-93 are down regulated in peripheral blood mononuclear cells
(PBMCs) from patients with type 1 diabetes. Immunobiology.
218:733–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Blalock EM, Buechel HM, Popovic J, Geddes
JW and Landfield PW: Microarray analyses of laser-captured
hippocampus reveal distinct gray and white matter signatures
associated with incipient Alzheimer's disease. J Chem Neuroanat.
42:118–126. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nunez-Iglesias J, Liu CC, Morgan TE, Finch
CE and Zhou XJ: Joint genome-wide profiling of miRNA and mRNA
expression in Alzheimer's disease cortex reveals altered miRNA
regulation. PLoS One. 5:e88982010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: Affy-analysis of affymetrix genechip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk-database: Prediction of possible miRNA binding sites by
‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mason JM, Morrison DJ, Basson MA and Licht
JD: Sprouty proteins: Multifaceted negative-feedback regulators of
receptor tyrosine kinase signaling. Trends Cell Biol. 16:45–54.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim HJ and Bar-Sagi D: Modulation of
signalling by Sprouty: A developing story. Nat Rev Mol Cell Biol.
5:441–450. 2004. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Mailleux AA, Tefft D, Ndiaye D, Itoh N,
Thiery JP, Warburton D and Bellusci S: Evidence that SPROUTY2
functions as an inhibitor of mouse embryonic lung growth and
morphogenesis. Mech Dev. 102:81–94. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gross I, Morrison DJ, Hyink DP, Georgas K,
English MA, Mericskay M, Hosono S, Sassoon D, Wilson PD, Little M
and Licht JD: The receptor tyrosine kinase regulator sprouty1 is a
target of the tumor suppressor WT1 and important for kidney
development. J Biol Chem. 278:41420–41430. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Basson MA, Akbulut S, Watson-Johnson J,
Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T,
McMahon AP, et al: Sprouty1 is a critical regulator of
GDNF/RET-mediated kidney induction. Dev Cell. 8:229–239. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Klein OD, Minowada G, Peterkova R, Kangas
A, Yu BD, Lesot H, Peterka M, Jernvall J and Martin GR: Sprouty
genes control diastema tooth development via bidirectional
antagonism of epithelial-mesenchymal FGF signaling. Dev Cell.
11:181–190. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Minowada G, Jarvis LA, Chi CL, Neubüser A,
Sun X, Hacohen N, Krasnow MA and Martin GR: Vertebrate sprouty
genes are induced by FGF signaling and can cause chondrodysplasia
when overexpressed. Development. 126:4465–4475. 1999.PubMed/NCBI
|
26
|
Gross I, Armant O, Benosman S, de Aguilar
JL, Freud JN, Kedinger M, Licht JD, Gaiddon C and Loeffler JP:
Sprouty2 inhibits BDNF-induced signaling and modulates neuronal
differentiation and survival. Cell Death Differ. 14:1802–1812.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yue J and Tigyi G: Conservation of
miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome. 21:88–94.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gao Y, Su J, Guo W, Polich ED, Magyar DP,
Xing Y, Li H, Smrt RD, Chang Q and Zhao X: Inhibition of miR-15a
promotes BDNF expression and rescues dendritic maturation deficits
in MeCP2-deficient neurons. Stem Cells. 33:1618–1629. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hebert SS, Horré K, Nicolaï L,
Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S,
Delacourte A and De Strooper B: Loss of microRNA cluster
miR-29a/b-1 in sporadic Alzheimer's disease correlates with
increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA.
105:6415–6420. 2008. View Article : Google Scholar : PubMed/NCBI
|