![Open Access](/resources/images/iconopenaccess.png)
Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells
- Authors:
- Sara Novick
- Marilous Shagan
- Karin Blau
- Sarit Lifshitz
- Noga Givon‑Lavi
- Nili Grossman
- Lipa Bodner
- Ron Dagan
- Yaffa Mizrachi Nebenzahl
-
Affiliations: Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel, Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel, Oral and Maxillofacial Surgery Unit, Soroka University Medical Center, Beer Sheva 84105, Israel, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel - Published online on: December 6, 2016 https://doi.org/10.3892/mmr.2016.5996
- Pages: 65-74
-
Copyright: © Novick et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Weinberger DM, Harboe ZB, Sanders EA, Ndiritu M, Klugman KP, Rückinger S, Dagan R, Adegbola R, Cutts F, Johnson HL, et al: Association of serotype with risk of death due to pneumococcal pneumonia: A meta-analysis. Clin Infect Dis. 51:692–699. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harvey RM, Trappetti C, Mahdi LK, Wang H, McAllister LJ, Scalvini A, Paton AW and Paton JC: The variable region of pneumococcal pathogenicity island 1 is responsible for unusually high virulence of a serotype 1 isolate. Infect Immun. 84:822–832. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vernatter J and Pirofski LA: Current concepts in host-microbe interaction leading to pneumococcal pneumonia. Curr Opin Infect Dis. 26:277–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R and O'Brien KL: Pneumococcal Carriage Group: The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 11:841–855. 2012. View Article : Google Scholar : PubMed/NCBI | |
van der Poll T and Opal SM: Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 374:1543–1556. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim L, McGee L, Tomczyk S and Beall B: Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective. Clin Microbiol Rev. 29:525–552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brauner A, Fridman O, Gefen O and Balaban NQ: Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 14:320–330. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hammitt LL, Bulkow LR, Singleton RJ, Nuorti JP, Hummel KB, Miernyk KM, Miernyk KM, Zanis C, Whaley M and Romero-Steiner S: Repeat revaccination with 23-valent pneumococcal polysaccharide vaccine among adults aged 55–74 years living in Alaska: No evidence of hyporesponsiveness. Vaccine. 29:2287–2295. 2011. View Article : Google Scholar : PubMed/NCBI | |
Käyhty H and Eskola J: New vaccines for the prevention of pneumococcal infections. Emerg Infect Dis. 2:289–298. 1996. View Article : Google Scholar : PubMed/NCBI | |
Golden AR, Adam HJ and Zhanel GG: Canadian Antimicrobial Resistance A: Invasive Streptococcus pneumoniae in Canada, 2011–2014: Characterization of new candidate 15-valent pneumococcal conjugate vaccine serotypes 22F and 33F. Vaccine. 34:2527–2530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jauneikaite E, Tocheva AS, Jefferies JM, Gladstone RA, Faust SN, Christodoulides M, Hibberd ML and Clarke SC: Current methods for capsular typing of Streptococcus pneumoniae. J Microbiol Methods. 113:41–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB and Nahm MH: Pneumococcal capsules and their types: Past, present, and future. Clin Microbiol Rev. 28:871–899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, et al: Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis. 196:1346–1354. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dagan R: Serotype replacement in perspective. Vaccine. 27:(Suppl 3). C22–C24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shak JR, Vidal JE and Klugman KP: Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends in Microbiol. 21:129–135. 2013. View Article : Google Scholar | |
Hammerschmidt S: Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol. 9:12–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Paterson GK and Orihuela CJ: Pneumococcal microbial surface components recognizing adhesive matrix molecules targeting of the extracellular matrix. Mol Microbiol. 77:1–5. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harfouche C, Filippini S, Gianfaldoni C, Ruggiero P, Moschioni M, Maccari S, Pancotto L, Arcidiacono L, Galletti B, Censini S, et al: RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone rrgb, is protective in vivo and elicits opsonic antibodies. Infect Immun. 80:451–460. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moschioni M, Donati C, Muzzi A, Masignani V, Censini S, Hanage WP, Bishop CJ, Reis JN, Normark S, Henriques-Normark B, et al: Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. J Infect Dis. 197:888–896. 2008. View Article : Google Scholar : PubMed/NCBI | |
Basset A, Zhang F, Benes C, Sayeed S, Herd M, Thompson C, Golenbock DT, Camilli A and Malley R: Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein. J Biol Chem. 288:2665–2675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, et al: A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol. 190:5480–5492. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E and Rohde M: Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun. 73:4653–4667. 2005. View Article : Google Scholar : PubMed/NCBI | |
Berry AM and Paton JC: Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun. 64:5255–5262. 1996.PubMed/NCBI | |
Anderton JM, Rajam G, Romero-Steiner S, Summer S, Kowalczyk AP, Carlone GM, Sampson JS and Ades EW: E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb Pathog. 42:225–236. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R and Hammerschmidt S: PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun. 73:2680–2699. 2005. View Article : Google Scholar : PubMed/NCBI | |
Blau K, Portnoi M, Shagan M, Kaganovich A, Rom S, Kafka D, Caspi V Chalifa, Porgador A, Givon-Lavi N, Gershoni JM, et al: Flamingo cadherin: A putative host receptor for Streptococcus pneumoniae. J Infect Dis. 195:1828–1837. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muchnik L, Adawi A, Ohayon A, Dotan S, Malka I, Azriel S, Shagan M, Portnoi M, Kafka D, Nahmani H, et al: NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice. PloS One. 8:e611282013. View Article : Google Scholar : PubMed/NCBI | |
Nebenzahl Y Mizrachi, Blau K, Kushnir T, Shagan M, Portnoi M, Cohen A, Azriel S, Malka I, Adawi A, Kafka D, et al: Streptococcus pneumoniae cell-wall-localized phosphoenolpyruvate protein phosphotransferase can function as an adhesin: Identification of its host target molecules and evaluation of its potential as a vaccine. PloS One. 11:e01503202016. View Article : Google Scholar : PubMed/NCBI | |
Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I and Tuomanen EI: Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 377:435–438. 1995. View Article : Google Scholar : PubMed/NCBI | |
Shivshankar P, Boyd AR, Le Saux CJ, Yeh IT and Orihuela CJ: Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell. 10:798–806. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nagaoka K, Yanagihara K, Morinaga Y, Nakamura S, Harada T, Hasegawa H, Izumikawa K, Ishimatsu Y, Kakeya H, Nishimura M and Kohno S: Prevotella intermedia induces severe bacteremic pneumococcal pneumonia in mice with upregulated platelet-activating factor receptor expression. Infect Immun. 82:587–593. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suri R, Periselneris J, Lanone S, Zeidler-Erdely PC, Melton G, Palmer KT, Andujar P, Antonini JM, Cohignac V, Erdely A, et al: Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. J Allergy Clin Immunol. 137:527–534.e7. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A and Masure HR: Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol. 25:819–829. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hammerschmidt S, Talay SR, Brandtzaeg P and Chhatwal GS: SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol. 25:1113–1124. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brooks-Walter A, Briles DE and Hollingshead SK: The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun. 67:6533–6542. 1999.PubMed/NCBI | |
Gamez G and Hammerschmidt S: Combat pneumococcal infections: Adhesins as candidates for protein-based vaccine development. Curr Drug Targets. 13:323–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Plumptre CD, Ogunniyi AD and Paton JC: Polyhistidine triad proteins of pathogenic streptococci. Trends Microbiol. 20:485–493. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khan MN and Pichichero ME: Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans. Vaccine. 30:2900–2907. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kallio A, Sepponen K, Hermand P, Denoël P, Godfroid F and Melin M: Role of Pht proteins in attachment of Streptococcus pneumoniae to respiratory epithelial cells. Infect Immun. 82:1683–1691. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keller LE, Robinson DA and McDaniel LS: Nonencapsulated Streptococcus pneumoniae: Emergence and pathogenesis. MBio. 7:e017922016.PubMed/NCBI | |
Alloing G, de Philip P and Claverys JP: Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae. J Mol Biol. 241:44–58. 1994. View Article : Google Scholar : PubMed/NCBI | |
Claverys JP, Grossiord B and Alloing G: Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental conditions? Res Microbiol. 151:457–463. 2000. View Article : Google Scholar : PubMed/NCBI | |
Park IH, Kim KH, Andrade AL, Briles DE, McDaniel LS and Nahm MH: Nontypeable pneumococci can be divided into multiple cps types, including one type expressing the novel gene pspK. mBio. 3:e00035–e00112. 2012.PubMed/NCBI | |
Watson DA and Musher DM: Interruption of capsule production in Streptococcus pneumonia serotype 3 by insertion of transposon Tn916. Infect Immun. 58:3135–3138. 1990.PubMed/NCBI | |
Carvalho SM, Kuipers OP and Neves AR: Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6. PloS One. 8:e584922013. View Article : Google Scholar : PubMed/NCBI | |
Ueda M, Hata K, Horie K and Torii S: The potential of oral mucosal cells for cultured epithelium: A preliminary report. Ann Plast Surg. 35:498–504. 1995. View Article : Google Scholar : PubMed/NCBI | |
Rheinwald JG and Green H: Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 6:331–343. 1975. View Article : Google Scholar : PubMed/NCBI | |
Rheinwald J: Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cellsCell Growth and Division: A Practical Approach. Baserga R: IRL Press; Oxford: pp. 81–94. 1989 | |
Lieber M, Smith B, Szakal A, Nelson-Rees W and Todaro G: A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 17:62–70. 1976. View Article : Google Scholar : PubMed/NCBI | |
Balis JU, Bumgarner SD, Paciga JE, Paterson JF and Shelley SA: Synthesis of lung surfactant-associated glycoproteins by A549 cells: Description of an in vitro model for human type II cell dysfunction. Exp Lung Res. 6:197–213. 1984. View Article : Google Scholar : PubMed/NCBI | |
Asano K, Chee CB, Gaston B, Lilly CM, Gerard C, Drazen JM and Stamler JS: Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci USA. 91:10089–10093. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bergmann S, Schoenen H and Hammerschmidt S: The interaction between bacterial enolase and plasminogen promotes adherence of Streptococcus pneumoniae to epithelial and endothelial cells. Int J Med Microbiol. 303:452–462. 2013. View Article : Google Scholar : PubMed/NCBI | |
Briles DE, Nahm M, Schroer K, Davie J, Baker P, Kearney J and Barletta R: Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J Exp Med. 153:694–705. 1981. View Article : Google Scholar : PubMed/NCBI | |
Nebenzahl Y Mizrachi, Porat N, Lifshitz S, Novick S, Levi A, Ling E, Liron O, Mordechai S, Sahu RK and Dagan R: Virulence of Streptococcus pneumoniae may be determined independently of capsular polysaccharide. FEMS Microbiol Lett. 233:147–152. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sahu RK, Mordechai S, Pesakhov S, Dagan R and Porat N: Use of FTIR spectroscopy to distinguish between capsular types and capsular quantities in Streptococcus pneumoniae. Biopolymers. 83:434–442. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mizrachi-Nebenzahl Y, Lifshitz S, Teitelbaum R, Novick S, Levi A, Benharroch D, Ling E and Dagan R: Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host. Clin Exp Immunol. 134:23–31. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ling E, Feldman G, Dagan R and Mizrachi-Nebenzahl Y: Cytokine mRNA expression in pneumococcal carriage, pneumonia, and sepsis in young mice. J Infect Dis. 188:1752–1766. 2003. View Article : Google Scholar : PubMed/NCBI | |
Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, Cieslak PR, Pilishvili T, Jackson D, et al: Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med. 348:1737–1746. 2003. View Article : Google Scholar : PubMed/NCBI | |
Daniely D, Portnoi M, Shagan M, Porgador A, Givon-Lavi N, Ling E, Dagan R and Nebenzahl Y Mizrachi: Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clin Exp Immunol. 144:254–163. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nebenzahl Y Mizrachi, Bernstein A, Portnoi M, Shagan M, Rom S, Porgador A and Dagan R: Streptococcus pneumoniae surface-exposed glutamyl tRNA synthetase, a putative adhesin, is able to induce a partially protective immune response in mice. J Infect Dis. 196:945–953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zahlten J, Kim YJ, Doehn JM, Pribyl T, Hocke AC, Garcia P, Hammerschmidt S, Suttorp N, Hippenstiel S and Hübner RH: Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis. 211:1822–1830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adamou JE, Wizemann TM, Barren P and Langermann S: Adherence of Streptococcus pneumoniae to human bronchial epithelial cells (BEAS-2B). Infect Immun. 66:820–822. 1998.PubMed/NCBI | |
Robson RL, Reed NA and Horvat RT: Differential activation of inflammatory pathways in A549 type II pneumocytes by Streptococcus pneumoniae strains with different adherence properties. BMC Infect Dis. 6:712006. View Article : Google Scholar : PubMed/NCBI | |
Mushtaq N, Ezzati M, Hall L, Dickson I, Kirwan M, Png KM, Mudway IS and Grigg J: Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter. J Allergy Clin Immunol. 127:1236–1242. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li-Korotky HS, Lo CY, Zeng FR, Lo D and Banks JM: Interaction of phase variation, host and pressure/gas composition: Pneumococcal gene expression of PsaA, SpxB, Ply and LytA in simulated middle ear environments. Int J Pediatr Otorhinolaryngol. 73:1417–1422. 2009. View Article : Google Scholar : PubMed/NCBI | |
Statt S, Ruan JW, Huang CT, Wu R and Kao CY: Lipidome and transcriptome profiling of pneumolysin intoxication identifies networks involved in statin-conferred protection of airway epithelial cells. Sci Rep. 5:106242015. View Article : Google Scholar : PubMed/NCBI | |
Li P, Shi J, He Q, Hu Q, Wang YY, Zhang LJ, Chan WT and Chen WX: Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PloS One. 10:e01227532015. View Article : Google Scholar : PubMed/NCBI | |
Zahlten J, Herta T, Kabus C, Steinfeldt M, Kershaw O, García P, Hocke AC, Gruber AD, Hübner RH, Steinicke R, et al: Role of pneumococcal autolysin for KLF4 expression and chemokine secretion in lung epithelium. Am J Respir Cell Mol Biol. 53:544–554. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leiberman A, Dagan R, Leibovitz E, Yagupsky P and Fliss DM: The bacteriology of the nasopharynx in childhood. Int J Pediatr Otorhinolaryngol. 49:(Suppl). S151–S153. 1999. View Article : Google Scholar : PubMed/NCBI | |
Siegel SJ and Weiser JN: Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol. 69:425–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schmeck B, Zahlten J, Moog K, van Laak V, Huber S, Hocke AC, Opitz B, Hoffmann E, Kracht M, Zerrahn J, et al: Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J Biol Chem. 279:53241–53247. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ratner AJ, Lysenko ES, Paul MN and Weiser JN: Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci USA. 102:3429–3434. 2005. View Article : Google Scholar : PubMed/NCBI | |
Opitz B, Püschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N and Hippenstiel S: Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem. 279:36426–36432. 2004. View Article : Google Scholar : PubMed/NCBI | |
Iovino F, Brouwer MC, van de Beek D, Molema G and Bijlsma JJ: Signalling or binding: The role of the platelet-activating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15:870–881. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M and Tuomanen E: The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell. 102:827–837. 2000. View Article : Google Scholar : PubMed/NCBI | |
Elm C, Rohde M, Vaerman JP, Chhatwal GS and Hammerschmidt S: Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian J Med Res. 119:(Suppl). 61–65. 2004.PubMed/NCBI | |
Stenfors LE and Räisänen S: Bacterial adhesion to epithelial cells of the nasopharynx essential in the development of otitis media. Nord Med. 107:278–279. 1992.(In Swedish). PubMed/NCBI | |
Stenfors LE and Räisänen S: In vivo attachment of Streptococcus pneumoniae and Haemophilus influenzae to nasopharyngeal epithelium in children. ORL J Otorhinolaryngol Relat Spec. 54:25–28. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ and Weiser JN: Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun. 75:83–90. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mbaki N, Rikitomi N, Akiyama M and Matsumoto K: In vitro adherence of Streptococcus pneumoniae to oropharyngeal cells: Enhanced activity and colonization of the upper respiratory tract in patients with recurrent respiratory infections. Tohoku J Exp Med. 157:345–354. 1989. View Article : Google Scholar : PubMed/NCBI | |
McCullers JA and Tuomanen EI: Molecular pathogenesis of pneumococcal pneumonia. Front Biosci. 6:D877–D889. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schembri MA, Dalsgaard D and Klemm P: Capsule shields the function of short bacterial adhesins. J Bacteriol. 186:1249–1257. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ring A, Weiser JN and Tuomanen EI: Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest. 102:347–360. 1998. View Article : Google Scholar : PubMed/NCBI | |
Talbot UM, Paton AW and Paton JC: Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun. 64:3772–3773. 1996.PubMed/NCBI | |
Cundell DR, Weiser JN, Shen J, Young A and Tuomanen EI: Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect Immun. 63:757–761. 1995.PubMed/NCBI | |
Weiser JN, Austrian R, Sreenivasan PK and Masure HR: Phase variation in pneumococcal opacity: Relationship between colonial morphology and nasopharyngeal colonization. Infect Immun. 62:2582–2592. 1994.PubMed/NCBI | |
Kim JO and Weiser JN: Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis. 177:368–377. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schaffner TO, Hinds J, Gould KA, Wüthrich D, Bruggmann R, Küffer M, Mühlemann K, Hilty M and Hathaway LJ: A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence. BMC Microbiol. 14:2102014. View Article : Google Scholar : PubMed/NCBI | |
Okumura CY and Nizet V: Subterfuge and sabotage: Evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol. 68:439–458. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reed JM, O'Callaghan RJ, Girgis DO, McCormick CC, Caballero AR and Marquart ME: Ocular virulence of capsule-deficient Streptococcus pneumoniae in a rabbit keratitis model. Invest Ophthalmol Vis Sci. 46:604–608. 2005. View Article : Google Scholar : PubMed/NCBI | |
Crum NF, Barrozo CP, Chapman FA, Ryan MA and Russell KL: An outbreak of conjunctivitis due to a novel unencapsulated Streptococcus pneumoniae among military trainees. Clin Infect Dis. 39:1148–1154. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dixit C, Keller LE, Bradshaw JL, Robinson DA, Swiatlo E and McDaniel LS: Nonencapsulated Streptococcus pneumoniae as a cause of chronic adenoiditis. IDCases. 4:56–58. 2016. View Article : Google Scholar : PubMed/NCBI |