1
|
Harman D: The free radical theory of
aging. Antioxid Redox Signal. 5:557–561. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rodríguez MI, Carretero M, Escames G,
López LC, Maldonado MD, Tan DX, Reiter RJ and Acuña-Castroviejo D:
Chronic melatonin treatment prevents age-dependent cardiac
mitochondrial dysfunction in senescence-accelerated mice. Free
Radic Res. 41:15–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Takeda T: Senescence-accelerated mouse
(SAM): A biogerontological resource in aging research. Neurobiol
Aging. 20:105–110. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rizvi SI and Jha R: Strategies for the
discovery of anti-aging compounds. Expert Opin Drug Discov.
6:89–102. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Acuña-Castroviejo D, Martín M, Macías M,
Escames G, León J, Khaldy H and Reiter RJ: Melatonin, mitochondria,
and cellular bioenergetics. J Pineal Res. 30:65–74. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rodriguez MI, Escames G, López LC, García
JA, Ortiz F, López A and Acuña-Castroviejo D: Melatonin
administration prevents cardiac and diaphragmatic mitochondrial
oxidative damage in senescence-accelerated mice. J Endocrinol.
194:637–643. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Escames G, Lopez A, García JA, García L,
Acuña-Castroviejo D, García JJ and López LC: The role of
mitochondria in brain aging and the effects of melatonin. Curr
Neuropharmacol. 8:182–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Petrosillo G, Moro N, Paradies V, Ruggiero
FM and Paradies G: Increased susceptibility to Ca(2+)-induced
permeability transition and to cytochrome c release in rat heart
mitochondria with aging: Effect of melatonin. J Pineal Res.
48:340–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Judge S and Leeuwenburgh C: Cardiac
mitochondrial bioenergetics, oxidative stress, and aging. Am J
Physiol Cell Physiol. 292:C1983–C1992. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lesnefsky EJ, Moghaddas S, Tandler B,
Kerner J and Hoppel CL: Mitochondrial dysfunction in cardiac
disease: Ischemia-reperfusion, aging, and heart failure. J Mol Cell
Cardiol. 33:1065–1089. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee SJ, Jin Y, Yoon HY, Choi BO, Kim HC,
Oh YK, Kim HS and Kim WK: Ciclopirox protects mitochondria from
hydrogen peroxide toxicity. Br J Pharmacol. 145:469–476.
2005.PubMed/NCBI
|
12
|
Poeggeler B, Durand G, Polidori A,
Pappolla MA, Vega-Naredo I, Coto-Montes A, Böker J, Hardeland R and
Pucci B: Mitochondrial medicine: Neuroprotection and life extension
by the new amphiphilic nitrone LPBNAH acting as a highly potent
antioxidant agent. J Neurochem. 95:962–973. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schapira AH: Mitochondrial involvement in
Parkinson's disease, Huntington's disease, hereditary spastic
paraplegia and Friedreich's ataxia. Biochim Biophys Acta.
1410:159–170. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Barlow-Walden LR, Reiter RJ, Abe M, Pablos
M, Menendez-Pelaez A, Chen LD and Poeggeler B: Melatonin stimulates
brain glutathione peroxidase activity. Neurochem Int. 26:497–502.
1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tan DX, Chen LD, Poeggeler B, Manchester
LC and Reiter RJ: Melatonin: A potent endogenous hydroxyl radical
scavenger. Endocrine J. 1:57–60. 1993.
|
16
|
Hardeland R: Melatonin and the theories of
aging: A critical appraisal of melatonin's role in antiaging
mechanisms. J Pineal Res. 55:325–356. 2013.PubMed/NCBI
|
17
|
Acuna-Castroviejo D, Escames G, Rodriguez
MI and Lopez LC: Melatonin role in the mitochondrial function.
Front Biosci. 12:947–963. 2007. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Reiter RJ: Oxidative processes and
antioxidative defense mechanisms in the aging brain. FASEB J.
9:526–533. 1995.PubMed/NCBI
|
19
|
Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon
J and Czarnocki Z: Melatonin as an antioxidant: Biochemical
mechanisms and pathophysiological implications in humans. Acta
Biochim Pol. 50:1129–1146. 2003.PubMed/NCBI
|
20
|
Okatani Y, Wakatsuki A, Shinohara K,
Taniguchi K and Fukaya T: Melatonin protects against oxidative
mitochondrial damage induced in rat placenta by ischemia and
reperfusion. J Pineal Res. 31:173–178. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okatani Y, Wakatsuki A, Reiter RJ and
Miyahara Y: Melatonin reduces oxidative damage of neural lipids and
proteins in senescence-accelerated mouse. Neurobiol Aging.
23:639–644. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lardone PJ, Alvarez-García O,
Carrillo-Vico A, Vega-Naredo I, Caballero B, Guerrero JM and
Coto-Montes A: Inverse correlation between endogenous melatonin
levels and oxidative damage in some tissues of SAM P8 mice. J
Pineal Res. 40:153–157. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bubenik GA and Konturek SJ: Melatonin and
aging: Prospects for human treatment. J Physiol Pharmacol.
62:13–19. 2011.PubMed/NCBI
|
24
|
Reiter RJ, Richardson BA, Johnson LY,
Ferguson BN and Dinh DT: Pineal melatonin rhythm: Reduction in
aging Syrian hamsters. Science. 210:1372–1373. 1980. View Article : Google Scholar : PubMed/NCBI
|
25
|
Reiter RJ, Craft CM, Johnson JE Jr, King
TS, Richardson BA, Vaughan GM and Vaughan MK: Age-associated
reduction in nocturnal pineal melatonin levels in female rats.
Endocrinology. 109:1295–1297. 1981. View Article : Google Scholar : PubMed/NCBI
|
26
|
Karasek M: Melatonin, human aging, and
age-related diseases. Exp Gerontol. 39:1723–1729. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wei H, Li L, Song Q, Ai H, Chu J and Li W:
Behavioural study of the D-galactose induced aging model in
C57BL/6J mice. Behav Brain Res. 157:245–251. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Song X, Bao M, Li D and Li YM: Advanced
glycation in D-galactose induced mouse aging model. Mech Ageing
Dev. 108:239–251. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Deng HB, Cheng CL, Cui DP, Li DD, Cui L
and Cai NS: Structural and functional changes of immune system in
aging mouse induced by D-galactose. Biomed Environ Sci. 19:432–438.
2006.PubMed/NCBI
|
30
|
Hammond JB and Kruger NJ: The bradford
method for protein quantitation. Methods Mol Biol. 3:25–32.
1988.PubMed/NCBI
|
31
|
Khlyntseva SV, Bazel YR, Vishnikin AB and
Andruch V: Methods for the determination of adenosine triphosphate
and other adenine nucleotides. J Analytic Chem. 64:657–673. 2009.
View Article : Google Scholar
|
32
|
Lee SD, Kuo WW, Ho YJ, Lin AC, Tsai CH,
Wang HF, Kuo CH, Yang AL, Huang CY and Hwang JM: Cardiac
Fas-dependent and mitochondria-dependent apoptosis in
ovariectomized rats. Maturitas. 61:268–277. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Karyn M Usher, Steven W Hansen, Jennifer S
Amoo, Allison P Bernstein and Mary Ellen P. McNally: Precision of
internal standard and external standard methods in high performance
liquid chromatography. LCGC Special Issues. 33:40–46. 2015.
|
34
|
Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang
S, Wang N, Liang Z, Li Y, Chen W, et al: JAK2/STAT3 activation by
melatonin attenuates the mitochondrial oxidative damage induced by
myocardial ischemia/reperfusion injury. J Pineal Res. 55:275–286.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Carretero M, Escames G, López LC, Venegas
C, Dayoub JC, García L and Acuña-Castroviejo D: Long-term melatonin
administration protects brain mitochondria from aging. J Pineal
Res. 47:192–200. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Martín M, Macías M, León J, Escames G,
Khaldy H and Acuña-Castroviejo D: Melatonin increases the activity
of the oxidative phosphorylation enzymes and the production of ATP
in rat brain and liver mitochondria. Int J Biochem Cell Biol.
34:348–357. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Atkinson DE and Fall L: Adenosine
triphosphate conservation in biosynthetic regulation. Escherichia
coli phosphoribosylpyrophosphate synthase. J Biol Chem.
242:3241–3242. 1967.PubMed/NCBI
|
38
|
Lopez LC, Escames G, Ortiz F, Ros E and
Acuña-Castroviejo D: Melatonin restores the mitochondrial
production of ATP in septic mice. Neuro Endocrinol Lett.
27:623–630. 2006.PubMed/NCBI
|
39
|
Karasek M, Reiter RJ, Cardinali DP and
Pawlikowski M: Future of melatonin as a therapeutic agent. Neuro
Endocrinol Lett. 23:(Suppl 1). S118–S121. 2002.
|
40
|
Galano A, Tan DX and Reiter RJ: On the
free radical scavenging activities of melatonin's metabolites, AFMK
and AMK. J Pineal Res. 54:245–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Galano A, Tan DX and Reiter RJ: Melatonin
as a natural ally against oxidative stress: A physicochemical
examination. J Pineal Res. 51:1–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Green DR and Reed JC: Mitochondria and
apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fang X, Chen M and Chen R: Cytochrome C
and Apoptosis. J Foreign Medical Sciences (Clinical Biochemistry
and Laboratory Medicine). 26:43–46. 2005.
|
44
|
Shimizu S, Narita M and Tsujimoto Y: Bcl-2
family proteins regulate the release of apoptogenic cytochrome c by
the mitochondrial channel VDAC. Nature. 399:483–487. 1999.
View Article : Google Scholar : PubMed/NCBI
|