1
|
Melton LJ III, Chrischilles EA, Cooper C,
Lane AW and Riggs BL: How many women have osteoporosis? JBMR
Anniversary Classic. JBMR. 7(9)1992.J Bone Miner Res. 20. 886–892.
2005.
|
2
|
Sowers MR, Zheng H, Jannausch ML,
McConnell D, Nan B, Harlow S and Randolph JF Jr: Amount of bone
loss in relation to time around the final menstrual period and
follicle-stimulating hormone staging of the transmenopause. J Clin
Endocrinol Metab. 95:2155–2162. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ritchie RO, Buehler MJ and Hansma P:
Plasticity and toughness in bone. Phys Today. 62:41–47. 2009.
View Article : Google Scholar
|
4
|
Zimmermann EA, Schaible E, Bale H, Barth
HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW III and
Ritchie RO: Age-related changes in the plasticity and toughness of
human cortical bone at multiple length scales. Proc Natl Acad Sci
USA. 108:14416–14421. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fitzpatrick P, Kirke PN, Daly L, Van Rooij
I, Dinn E, Burke H, Heneghan J, Bourke G and Masterson J:
Predictors of first hip fracture and mortality post fracture in
older women. Ir J Med Sci. 170:49–53. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Matsuo K: Cross-talk among bone cells.
Curr Opin Nephrol Hypertens. 18:292–297. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Teitelbaum SL: Bone resorption by
osteoclasts. Science. 289:1504–1508. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wada T, Nakashima T, Hiroshi N and
Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone
disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Asagiri M and Takayanagi H: The molecular
understanding of osteoclast differentiation. Bone. 40:251–264.
2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Amano H, Yamada S and Felix R:
Colony-stimulating factor-1 stimulates the fusion process in
osteoclasts. J Bone Miner Res. 13:846–853. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Boonen S, Reginster JY, Kaufman JM,
Lippuner K, Zanchetta J, Langdahl B, Rizzoli R, Lipschitz S, Dimai
HP, Witvrouw R, et al: Fracture risk and zoledronic acid therapy in
men with osteoporosis. N Engl J Med. 367:1714–1723. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jeong HS, Venkatesan J and Kim SK:
Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
Int J Biol Macromol. 57:138–141. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Thinh PD, Menshova RV, Ermakova SP,
Anastyuk SD, Ly BM and Zvyagintseva TN: Structural characteristics
and anticancer activity of fucoidan from the brown alga sargassum
mcclurei. Mar Drugs. 11:1456–1476. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Changotade S, Korb G, Bassil J, Barroukh
B, Willig C, Colliec-Jouault S, Durand P, Godeau G and Senni K:
Potential effects of a low-molecular-weight fucoidan extracted from
brown algae on bone biomaterial osteoconductive properties. J
Biomed Mater Res A. 87:666–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Park HS, Hwang HJ, Kim GY, Cha HJ, Kim WJ,
Kim ND, Yoo YH and Choi YH: Induction of apoptosis by fucoidan in
human leukemia U937 cells through activation of p38 MAPK and
modulation of Bcl-2 family. Mar Drugs. 11:2347–2364. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Park SB, Chun KR, Kim JK, Suk K, Jung YM
and Lee WH: The differential effect of high and low molecular
weight fucoidans on the severity of collagen-induced arthritis in
mice. Phytother Res. 24:1384–1391. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yan-li C, Pei-pei W, Jun-ming Z and
Song-song Z: Jian-wei: Extraction of fucoidan using multienzyme
enzymolysis and their structural analysis, antioxidation research.
Journal of Zhejiang University (Science Edition). 38:536–540.
2011.(In Chinese).
|
19
|
Mar Arriero M, Ramis JM, Perelló J and
Monjo M: Inositol Hexakisphosphate inhibits osteoclastogenesis on
RAW 264.7 cells and human primary osteoclasts. PloS One.
7:e431872012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Carbonare L Dalle, Valenti MT, Bertoldo F,
Zanatta M, Zenari S, Realdi G, Lo Cascio V and Giannini S: Bone
microarchitecture evaluated by histomorphometry. Micron.
36:609–616. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma Z and Fu Q: Comparison of the
therapeutic effects of yeast-incorporated gallium with those of
inorganic gallium on ovariectomized osteopenic rats. Biol Trace
Elem Res. 134:280–287. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lum L, Wong BR, Josien R, Becherer JD,
Erdjument-Bromage H, Schlöndorff J, Tempst P, Choi Y and Blobel CP:
Evidence for a role of a tumor necrosis factor-alpha
(TNF-alpha)-converting enzyme-like protease in shedding of TRANCE a
TNF family member involved in osteoclastogenesis and dendritic cell
survival. J Biol Chem. 274:13613–13618. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cole AA and Walters LM: Tartrate-resistant
acid phosphatase in bone and cartilage following decalcification
and cold-embedding in plastic. J Histochem Cytochem. 35:203–206.
1987. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chakrabarti S and Patel KD: Matrix
metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp
Lung Res. 31:599–621. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Delaissé JM, Engsig MT, Everts V, del
Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B,
Lochter A, et al: Proteinases in bone resorption: Obvious and less
obvious roles. Clinica Chimica Acta. 291:223–234. 2000. View Article : Google Scholar
|
27
|
Ishida N, Hayashi K, Hoshijima M, Ogawa T,
Koga S, Miyatake Y, Kumegawa M, Kimura T and Takeya T: Large scale
gene expression analysis of osteoclastogenesis in vitro and
elucidation of NFAT2 as a key regulator. J Biol Chem.
277:41147–41156. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Asagiri M, Sato K, Usami T, Ochi S,
Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E and
Takayanagi H: Autoamplification of NFATc1 expression determines its
essential role in bone homeostasis. J Exp Med. 202:1261–1269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Matsuo K, Galson DL, Zhao C, Peng L,
Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H
and Wagner EF: Nuclear factor of activated T-cells (NFAT) rescues
osteoclastogenesis in precursors lacking c-Fos. J Biol Chem.
279:26475–26480. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao Q, Wang X, Liu Y, He A and Jia R:
NFATc1: Functions in osteoclasts. Int J Biochem Cell Biol.
42:576–579. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kong YY, Yoshida H, Sarosi I, Tan HL,
Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G,
Itie A, et al: OPGL is a key regulator of osteoclastogenesis,
lymphocyte development and lymph-node organogenesis. Nature.
397:315–323. 1999. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Nemeth K, Schoppet M, Al-Fakhri N, Helas
S, Jessberger R, Hofbauer LC and Goettsch C: The role of
osteoclast-associated receptor in osteoimmunology. J Immunol.
186:13–18. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Barrow AD, Raynal N, Andersen TL, Slatter
DA, Bihan D, Pugh N, Cella M, Kim T, Rho J, Negishi-Koga T, et al:
OSCAR is a collagen receptor that costimulates osteoclastogenesis
in DAP12-deficient humans and mice. J Clin Invest. 121:3505–3516.
2011. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Yu M, Qi X, Moreno JL, Farber DL and
Keegan AD: NF-κB signaling participates in both RANKL-and
IL-4-induced macrophage fusion: Receptor cross-talk leads to
alterations in NF-κB pathways. J Immunol. 187:1797–1806. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Liou SF, Hsu JH, Lin IL, Ho ML, Hsu PC,
Chen LW, Chen IJ and Yeh JL: KMUP-1 suppresses RANKL-induced
osteoclastogenesis and prevents ovariectomy-induced bone loss:
Roles of MAPKs, Akt, NF-κB and calcium/calcineurin/NFATc1 pathways.
PloS One. 8:e694682013. View Article : Google Scholar : PubMed/NCBI
|
36
|
McNamara LM: Perspective on
post-menopausal osteoporosis: Establishing an interdisciplinary
understanding of the sequence of events from the molecular level to
whole bone fractures. J R Soc Interface. 7:353–372. 2010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Brouwers JEM, Lambers FM, Gasser JA, van
Rietbergen B and Huiskes R: Bone degeneration and recovery after
early and late bisphosphonate treatment of ovariectomized wistar
rats assessed by in vivo micro-computed tomography. Calcif Tissue
Int. 82:202–211. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boyd SK, Davison P, Müller R and Gasser
JA: Monitoring individual morphological changes over time in
ovariectomized rats by in vivo micro-computed tomography. Bone.
39:854–862. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yoon KH, Cho DC, Yu SH, Kim KT, Jeon Y and
Sung JK: The change of bone metabolism in ovariectomized rats:
Analyses of microCT scan and biochemical markers of bone turnover.
J Korean Neurosurg Soc. 51:323–327. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wronski TJ, Schenk PA, Cintrón M and Walsh
CC: Effect of body weight on osteopenia in ovariectomized rats.
Calcif Tissue Int. 40:155–159. 1987. View Article : Google Scholar : PubMed/NCBI
|